Joint Moments of Higher Order Derivatives of CUE Characteristic Polynomials I: Asymptotic Formulae

Pub Date : 2024-04-06 DOI:10.1093/imrn/rnae063
Jonathan P Keating, Fei Wei
{"title":"Joint Moments of Higher Order Derivatives of CUE Characteristic Polynomials I: Asymptotic Formulae","authors":"Jonathan P Keating, Fei Wei","doi":"10.1093/imrn/rnae063","DOIUrl":null,"url":null,"abstract":"We derive explicit asymptotic formulae for the joint moments of the $n_{1}$-th and $n_{2}$-th derivatives of the characteristic polynomials of Circular Unitary Ensemble random matrices for any non-negative integers $n_{1}, n_{2}$. These formulae are expressed in terms of determinants whose entries involve modified Bessel functions of the first kind. We also express them in terms of two types of combinatorial sums. Similar results are obtained for the analogue of Hardy’s $Z$-function. We use these formulae to formulate general conjectures for the joint moments of the $n_{1}$-th and $n_{2}$-th derivatives of the Riemann zeta-function and of Hardy’s $Z$-function. Our conjectures are supported by comparison with results obtained previously in the number theory literature.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We derive explicit asymptotic formulae for the joint moments of the $n_{1}$-th and $n_{2}$-th derivatives of the characteristic polynomials of Circular Unitary Ensemble random matrices for any non-negative integers $n_{1}, n_{2}$. These formulae are expressed in terms of determinants whose entries involve modified Bessel functions of the first kind. We also express them in terms of two types of combinatorial sums. Similar results are obtained for the analogue of Hardy’s $Z$-function. We use these formulae to formulate general conjectures for the joint moments of the $n_{1}$-th and $n_{2}$-th derivatives of the Riemann zeta-function and of Hardy’s $Z$-function. Our conjectures are supported by comparison with results obtained previously in the number theory literature.
分享
查看原文
CUE 特征多项式高阶导数的联合矩 I:渐近公式
我们推导出任何非负整数 $n_{1}, n_{2}$ 的循环单元集合随机矩阵特征多项式的 $n_{1}$-th 和 $n_{2}$-th 导数的联合矩的明确渐近公式。这些公式用行列式表示,行列式的条目涉及修正的第一类贝塞尔函数。我们还用两类组合和来表示它们。对于哈代的 $Z$ 函数,我们也得到了类似的结果。我们利用这些公式提出了黎曼zeta函数和哈代Z$函数的 $n_{1}$-th 和 $n_{2}$-th 导数的联合矩的一般猜想。我们的猜想通过与之前在数论文献中获得的结果进行比较而得到支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信