The Moduli Space of Cyclic Covers in Positive Characteristic

Pub Date : 2024-04-05 DOI:10.1093/imrn/rnae060
Huy Dang, Matthias Hippold
{"title":"The Moduli Space of Cyclic Covers in Positive Characteristic","authors":"Huy Dang, Matthias Hippold","doi":"10.1093/imrn/rnae060","DOIUrl":null,"url":null,"abstract":"We study the $p$-rank stratification of the moduli space $\\operatorname{\\mathcal{A}\\mathcal{S}\\mathcal{W}}_{(d_{1},d_{2},\\ldots ,d_{n})}$, which represents $\\mathbb{Z}/p^{n}$-covers in characteristic $p>0$ whose $\\mathbb{Z}/p^{i}$-subcovers have conductor $d_{i}$. In particular, we identify the irreducible components of the moduli space and determine their dimensions. To achieve this, we analyze the ramification data of the represented curves and use it to classify all the irreducible components of the space. In addition, we provide a comprehensive list of pairs $(p,(d_{1},d_{2},\\ldots ,d_{n}))$ for which $\\operatorname{\\mathcal{A}\\mathcal{S}\\mathcal{W}}_{(d_{1},d_{2},\\ldots ,d_{n})}$ in characteristic $p$ is irreducible. Finally, we investigate the geometry of $\\operatorname{\\mathcal{A}\\mathcal{S}\\mathcal{W}}_{(d_{1},d_{2},\\ldots ,d_{n})}$ by studying the deformations of cyclic covers that vary the $p$-rank and the number of branch points.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the $p$-rank stratification of the moduli space $\operatorname{\mathcal{A}\mathcal{S}\mathcal{W}}_{(d_{1},d_{2},\ldots ,d_{n})}$, which represents $\mathbb{Z}/p^{n}$-covers in characteristic $p>0$ whose $\mathbb{Z}/p^{i}$-subcovers have conductor $d_{i}$. In particular, we identify the irreducible components of the moduli space and determine their dimensions. To achieve this, we analyze the ramification data of the represented curves and use it to classify all the irreducible components of the space. In addition, we provide a comprehensive list of pairs $(p,(d_{1},d_{2},\ldots ,d_{n}))$ for which $\operatorname{\mathcal{A}\mathcal{S}\mathcal{W}}_{(d_{1},d_{2},\ldots ,d_{n})}$ in characteristic $p$ is irreducible. Finally, we investigate the geometry of $\operatorname{\mathcal{A}\mathcal{S}\mathcal{W}}_{(d_{1},d_{2},\ldots ,d_{n})}$ by studying the deformations of cyclic covers that vary the $p$-rank and the number of branch points.
分享
查看原文
正特征循环盖的模空间
我们研究了模空间 $operatorname\mathcal{A}\mathcal{S}\mathcal{W}}_{(d_{1},d_{2},\ldots ,d_{n})}$ 的 $p$-rank stratification,它表示特征 $p&;gt;0$的$\mathbb{Z}/p^{i}$子覆盖具有导体$d_{i}$。特别是,我们确定了模空间的不可还原成分,并确定了它们的维数。为此,我们分析了所代表曲线的斜切数据,并利用它对空间的所有不可还原成分进行了分类。此外,我们还提供了在特征 $p$ 中 $\operatorname\mathcal{A}\mathcal{S}\mathcal{W}}_{(d_{1},d_{2},\ldots ,d_{n})}$是不可还原的线对 $(p,(d_{1},d_{2},\ldots ,d_{n}))$的完整列表。最后,我们通过研究改变 $p$-rank 和分支点数量的循环盖的变形来研究 $operatorname{mathcal{A}\mathcal{S}\mathcal{W}}_{(d_{1},d_{2},\ldots ,d_{n})}$ 的几何。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信