Limiting Distribution of Dense Orbits in a Moduli Space of Rank m Discrete Subgroups in (m+1)-Space

Pub Date : 2024-04-03 DOI:10.1093/imrn/rnae046
Michael Bersudsky, Hao Xing
{"title":"Limiting Distribution of Dense Orbits in a Moduli Space of Rank m Discrete Subgroups in (m+1)-Space","authors":"Michael Bersudsky, Hao Xing","doi":"10.1093/imrn/rnae046","DOIUrl":null,"url":null,"abstract":"We study the limiting distribution of dense orbits of a lattice subgroup $\\Gamma \\leq \\textrm{SL}(m+1,\\mathbb{R})$ acting on $H\\backslash \\textrm{SL}(m+1,\\mathbb{R})$, with respect to a filtration of growing norm balls. The novelty of our work is that the groups $H$ we consider have infinitely many non-trivial connected components. For a specific such $H$, the homogeneous space $H\\backslash G$ identifies with $X_{m,m+1}$, a moduli space of rank $m$-discrete subgroups in $\\mathbb{R}^{m+1}$. This study is motivated by the work of Shapira-Sargent who studied random walks on $X_{2,3}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the limiting distribution of dense orbits of a lattice subgroup $\Gamma \leq \textrm{SL}(m+1,\mathbb{R})$ acting on $H\backslash \textrm{SL}(m+1,\mathbb{R})$, with respect to a filtration of growing norm balls. The novelty of our work is that the groups $H$ we consider have infinitely many non-trivial connected components. For a specific such $H$, the homogeneous space $H\backslash G$ identifies with $X_{m,m+1}$, a moduli space of rank $m$-discrete subgroups in $\mathbb{R}^{m+1}$. This study is motivated by the work of Shapira-Sargent who studied random walks on $X_{2,3}$.
分享
查看原文
级数为 m 的模数空间中密集轨道的极限分布 (m+1)- 空间中的离散子群
我们研究了作用于 $H\backslash \textrm{SL}(m+1,\mathbb{R})$ 的晶格子群 $\Gamma \leq \textrm{SL}(m+1,\mathbb{R})$ 的致密轨道的极限分布,关于增长规范球的滤波。我们工作的新颖之处在于,我们所考虑的组 $H$ 有无限多的非三维连通成分。对于这样一个特定的 $H$,同质空间 $H\backslash G$ 与 $X_{m,m+1}$--$\mathbb{R}^{m+1}$中秩为 $m$ 的离散子群的模空间--相一致。这项研究的灵感来自沙皮拉-萨金特(Shapira-Sargent)的工作,他研究了 $X_{2,3}$ 上的随机漫步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信