Diverse material properties and morphology of moth proboscises relates to the feeding habits of some macromoth and other lepidopteran lineages

IF 3.6 3区 生物学 Q1 BIOLOGY
Elaine M. Bast, Natalie T. Marshall, Kendall O. Myers, Lucas W. Marsh, Martin Walschburger Hurtado, Peter A. Van Zandt, Matthew S. Lehnert
{"title":"Diverse material properties and morphology of moth proboscises relates to the feeding habits of some macromoth and other lepidopteran lineages","authors":"Elaine M. Bast, Natalie T. Marshall, Kendall O. Myers, Lucas W. Marsh, Martin Walschburger Hurtado, Peter A. Van Zandt, Matthew S. Lehnert","doi":"10.1098/rsfs.2023.0051","DOIUrl":null,"url":null,"abstract":"<p>Insects have evolved unique structures that host a diversity of material and mechanical properties, and the mouthparts (proboscis) of butterflies and moths (Lepidoptera) are no exception. Here, we examined proboscis morphology and material properties from several previously unstudied moth lineages to determine if they relate to flower visiting and non-flower visiting feeding habits. Scanning electron microscopy and three-dimensional imaging were used to study proboscis morphology and assess surface roughness patterns on the galeal surface, respectively. Confocal laser scanning microscopy was used to study patterns of cuticular autofluorescence, which was quantified with colour analysis software. We found that moth proboscises display similar autofluorescent signals and morphological patterns in relation to feeding habits to those previously described for flower and non-flower visiting butterflies. The distal region of proboscises of non-flower visitors is brush-like for augmented capillarity and exhibited blue autofluorescence, indicating the possible presence of resilin and increased flexibility. Flower visitors have smoother proboscises and show red autofluorescence, an indicator of high sclerotization, which is adaptive for floral tube entry. We propose the lepidopteran proboscis as a model structure for understanding how insects have evolved a suite of morphological and material adaptations to overcome the challenges of acquiring fluids from diverse sources.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2023.0051","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Insects have evolved unique structures that host a diversity of material and mechanical properties, and the mouthparts (proboscis) of butterflies and moths (Lepidoptera) are no exception. Here, we examined proboscis morphology and material properties from several previously unstudied moth lineages to determine if they relate to flower visiting and non-flower visiting feeding habits. Scanning electron microscopy and three-dimensional imaging were used to study proboscis morphology and assess surface roughness patterns on the galeal surface, respectively. Confocal laser scanning microscopy was used to study patterns of cuticular autofluorescence, which was quantified with colour analysis software. We found that moth proboscises display similar autofluorescent signals and morphological patterns in relation to feeding habits to those previously described for flower and non-flower visiting butterflies. The distal region of proboscises of non-flower visitors is brush-like for augmented capillarity and exhibited blue autofluorescence, indicating the possible presence of resilin and increased flexibility. Flower visitors have smoother proboscises and show red autofluorescence, an indicator of high sclerotization, which is adaptive for floral tube entry. We propose the lepidopteran proboscis as a model structure for understanding how insects have evolved a suite of morphological and material adaptations to overcome the challenges of acquiring fluids from diverse sources.

飞蛾长鼻的不同材料特性和形态与一些大飞蛾和其他鳞翅目种类的取食习性有关
昆虫进化出了具有多种材料和机械特性的独特结构,蝴蝶和蛾类(鳞翅目)的口器(长鼻)也不例外。在这里,我们研究了以前未研究过的几个蛾类品系的探针形态和材料特性,以确定它们是否与探花和非探花取食习性有关。我们使用扫描电子显微镜和三维成像技术分别研究了长喙的形态和评估了长喙表面的粗糙度模式。共焦激光扫描显微镜用于研究角质层自发荧光的模式,并利用色彩分析软件对其进行量化。我们发现,蛾类探喙显示出的自发荧光信号和形态模式与之前描述的访花和非访花蝶的取食习性相似。非访花蝶的探喙远端呈刷状,毛细管增加,并显示出蓝色的自动荧光,表明可能存在树脂蛋白并增加了灵活性。访花昆虫的探针更光滑,并显示红色自发荧光,这是硬质化程度高的指标,有利于花管进入。我们建议将鳞翅目昆虫的长鼻作为一个模型结构,以了解昆虫是如何进化出一系列形态和物质适应性来克服从不同来源获取液体的挑战的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Interface Focus
Interface Focus BIOLOGY-
CiteScore
9.20
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信