Bounding Radon Numbers via Betti Numbers

Pub Date : 2024-04-03 DOI:10.1093/imrn/rnae056
Zuzana Patáková
{"title":"Bounding Radon Numbers via Betti Numbers","authors":"Zuzana Patáková","doi":"10.1093/imrn/rnae056","DOIUrl":null,"url":null,"abstract":"We prove general topological Radon-type theorems for sets in $\\mathbb R^{d}$ or on a surface. Combined with a recent result of Holmsen and Lee, we also obtain fractional Helly theorem, and consequently the existence of weak $\\varepsilon $-nets as well as a $(p,q)$-theorem for those sets. More precisely, given a family ${\\mathcal{F}}$ of subsets of ${\\mathbb{R}}^{d}$, we will measure the homological complexity of ${\\mathcal{F}}$ by the supremum of the first $\\lceil d/2\\rceil $ reduced Betti numbers of $\\bigcap{\\mathcal{G}}$ over all nonempty ${\\mathcal{G}} \\subseteq{\\mathcal{F}}$. We show that if ${\\mathcal{F}}$ has homological complexity at most $b$, the Radon number of ${\\mathcal{F}}$ is bounded in terms of $b$ and $d$. In case that ${\\mathcal{F}}$ lives on a surface and the number of connected components of $\\bigcap \\mathcal G$ is at most $b$ for any $\\mathcal G\\subseteq \\mathcal F$, then the Radon number of ${\\mathcal{F}}$ is bounded by a function depending only on $b$ and the surface itself. For surfaces, if we moreover assume the sets in ${\\mathcal{F}}$ are open, we show that the fractional Helly number of $\\mathcal F$ is linear in $b$. The improvement is based on a recent result of the author and Kalai. Specifically, for $b=1$ we get that the fractional Helly number is at most three, which is optimal. This case further leads to solving a conjecture of Holmsen, Kim, and Lee about an existence of a $(p,q)$-theorem for open subsets of a surface.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove general topological Radon-type theorems for sets in $\mathbb R^{d}$ or on a surface. Combined with a recent result of Holmsen and Lee, we also obtain fractional Helly theorem, and consequently the existence of weak $\varepsilon $-nets as well as a $(p,q)$-theorem for those sets. More precisely, given a family ${\mathcal{F}}$ of subsets of ${\mathbb{R}}^{d}$, we will measure the homological complexity of ${\mathcal{F}}$ by the supremum of the first $\lceil d/2\rceil $ reduced Betti numbers of $\bigcap{\mathcal{G}}$ over all nonempty ${\mathcal{G}} \subseteq{\mathcal{F}}$. We show that if ${\mathcal{F}}$ has homological complexity at most $b$, the Radon number of ${\mathcal{F}}$ is bounded in terms of $b$ and $d$. In case that ${\mathcal{F}}$ lives on a surface and the number of connected components of $\bigcap \mathcal G$ is at most $b$ for any $\mathcal G\subseteq \mathcal F$, then the Radon number of ${\mathcal{F}}$ is bounded by a function depending only on $b$ and the surface itself. For surfaces, if we moreover assume the sets in ${\mathcal{F}}$ are open, we show that the fractional Helly number of $\mathcal F$ is linear in $b$. The improvement is based on a recent result of the author and Kalai. Specifically, for $b=1$ we get that the fractional Helly number is at most three, which is optimal. This case further leads to solving a conjecture of Holmsen, Kim, and Lee about an existence of a $(p,q)$-theorem for open subsets of a surface.
分享
查看原文
通过贝蒂数限定拉顿数
我们证明了 $\mathbb R^{d}$ 中或曲面上集合的一般拓扑拉顿类型定理。结合 Holmsen 和 Lee 最近的一个结果,我们还得到了分数海利定理,并因此得到了弱 $\varepsilon $ 网的存在以及这些集合的 $(p,q)$ 定理。更准确地说,给定${mathbb{R}}^{d}$的一个子集族${mathcal{F}}$,我们将通过所有非空${mathcal{G}}$上的$\bigcap\mathcal{G}}$的第一个$\lceil d/2\rceil $还原贝蒂数的上峰来度量${mathcal{F}}$的同调复杂性。\subseteq/{mathcal{F}}$。我们证明,如果 ${mathcal{F}}$ 的同调复杂度最多为 $b$,那么 ${mathcal{F}}$ 的拉顿数是有界的。如果 ${mathcal{F}}$ 位于一个曲面上,并且对于任意 $\mathcal Gsubseteq \mathcal F$ 而言,${mathcal{F}}$ 的连通分量的数量最多为 $b$,那么 ${mathcal{F}}$ 的 Radon 数是由一个仅依赖于 $b$ 和曲面本身的函数限定的。对于曲面,如果我们再假设 ${mathcal{F}}$ 中的集合是开放的,我们就可以证明 $\mathcal F$ 的小数赫利数与 $b$ 成线性关系。这一改进基于作者和卡莱的最新结果。具体地说,对于 $b=1$,我们得到分数赫利数最多是 3,这是最优的。这种情况进一步解决了 Holmsen、Kim 和 Lee 关于曲面开放子集存在 $(p,q)$ 定理的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信