Analysis and Computation of a Weak Galerkin Scheme for Solving the 2D/3D Stationary Stokes Interface Problems with High-Order Elements

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Raman Kumar, Bhupen Deka
{"title":"Analysis and Computation of a Weak Galerkin Scheme for Solving the 2D/3D Stationary Stokes Interface Problems with High-Order Elements","authors":"Raman Kumar, Bhupen Deka","doi":"10.1515/jnma-2023-0112","DOIUrl":null,"url":null,"abstract":"In this paper, we present a high-order weak Galerkin finite element method (WG-FEM) for solving the stationary Stokes interface problems with discontinuous velocity and pressure in ℝ<jats:sup> <jats:italic>d</jats:italic> </jats:sup> (<jats:italic>d</jats:italic> = 2, 3). This WG method is equipped with stable finite elements consisting of usual polynomials of degree <jats:italic>k</jats:italic> ≥ 1 for the velocity and polynomials of degree <jats:italic>k</jats:italic> – 1 for the pressure, both are discontinuous. Optimal convergence rates of order <jats:italic>k</jats:italic> + 1 for the velocity and order <jats:italic>k</jats:italic> for the pressure are established in <jats:italic>L</jats:italic> <jats:sup>2</jats:sup>-norm on hybrid meshes. Numerical experiments verify the expected order of accuracy for both two-dimensional and three-dimensional examples. Moreover, numerically it is shown that the proposed WG algorithm is able to accommodate geometrically complicated and very irregular interfaces having sharp edges, cusps, and tips.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2023-0112","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a high-order weak Galerkin finite element method (WG-FEM) for solving the stationary Stokes interface problems with discontinuous velocity and pressure in ℝ d (d = 2, 3). This WG method is equipped with stable finite elements consisting of usual polynomials of degree k ≥ 1 for the velocity and polynomials of degree k – 1 for the pressure, both are discontinuous. Optimal convergence rates of order k + 1 for the velocity and order k for the pressure are established in L 2-norm on hybrid meshes. Numerical experiments verify the expected order of accuracy for both two-dimensional and three-dimensional examples. Moreover, numerically it is shown that the proposed WG algorithm is able to accommodate geometrically complicated and very irregular interfaces having sharp edges, cusps, and tips.
用高阶元素解决二维/三维静态斯托克斯界面问题的弱 Galerkin 方案的分析与计算
本文提出了一种高阶弱 Galerkin 有限元方法 (WG-FEM),用于求解速度和压力在 ℝ d (d = 2, 3) 中不连续的斯托克斯静止界面问题。这种 WG 方法配备了稳定的有限元,其中速度由 k ≥ 1 阶的普通多项式组成,压力由 k - 1 阶的多项式组成,两者都是不连续的。在混合网格的 L 2 规范下,速度和压力的最佳收敛率分别为 k + 1 阶和 k 阶。数值实验验证了二维和三维实例的预期精度。此外,数值结果表明,所提出的 WG 算法能够适应具有尖锐边缘、尖角和尖端的复杂和非常不规则的几何界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信