Ground state normalized solutions to the Kirchhoff equation with general nonlinearities: mass supercritical case

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qun Wang, Aixia Qian
{"title":"Ground state normalized solutions to the Kirchhoff equation with general nonlinearities: mass supercritical case","authors":"Qun Wang, Aixia Qian","doi":"10.1186/s13660-024-03086-5","DOIUrl":null,"url":null,"abstract":"We study the following nonlinear mass supercritical Kirchhoff equation: $$ - \\biggl(a+b \\int _{\\mathbb{R}^{N}} \\vert \\nabla u \\vert ^{2} \\biggr) \\triangle u+ \\mu u=f(u) \\quad \\text{in } {\\mathbb{R}^{N}}, $$ where $a ,b,m>0$ are prescribed, and the normalized constrain $\\int _{\\mathbb{R}^{N}}|u|^{2}\\,dx =m$ is satisfied in the case $1\\leq N\\leq 3$ . The nonlinearity f is more general and satisfies weak mass supercritical conditions. Under some mild assumptions, we establish the existence of ground state when $1\\leq N\\leq 3$ and obtain infinitely many radial solutions when $2\\leq N\\leq 3$ by constructing a particular bounded Palais–Smale sequence.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03086-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We study the following nonlinear mass supercritical Kirchhoff equation: $$ - \biggl(a+b \int _{\mathbb{R}^{N}} \vert \nabla u \vert ^{2} \biggr) \triangle u+ \mu u=f(u) \quad \text{in } {\mathbb{R}^{N}}, $$ where $a ,b,m>0$ are prescribed, and the normalized constrain $\int _{\mathbb{R}^{N}}|u|^{2}\,dx =m$ is satisfied in the case $1\leq N\leq 3$ . The nonlinearity f is more general and satisfies weak mass supercritical conditions. Under some mild assumptions, we establish the existence of ground state when $1\leq N\leq 3$ and obtain infinitely many radial solutions when $2\leq N\leq 3$ by constructing a particular bounded Palais–Smale sequence.
具有一般非线性的基尔霍夫方程的基态归一化解:质量超临界情况
我们研究了以下非线性质量超临界基尔霍夫方程:$$ - \biggl(a+b \int _{\mathbb{R}^{N}} \vert \nabla u \vert ^{2} \biggr) \triangle u+ \mu u=f(u) \quad \text{in }。{\mathbb{R}^{N}}, $$ 其中$a,b,m>0$是规定的,并且归一化约束$\int _\mathbb{R}^{N}}|u|^{2}\,dx =m$在$1\leq N\leq 3$的情况下是满足的。非线性 f 更为一般,满足弱质量超临界条件。在一些温和的假设条件下,我们确定了当 $1\leq N\leq 3$ 时基态的存在,并通过构造一个特殊的有界 Palais-Smale 序列得到了当 $2\leq N\leq 3$ 时的无穷多个径向解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信