Ground state normalized solutions to the Kirchhoff equation with general nonlinearities: mass supercritical case

IF 1.5 3区 数学 Q1 MATHEMATICS
Qun Wang, Aixia Qian
{"title":"Ground state normalized solutions to the Kirchhoff equation with general nonlinearities: mass supercritical case","authors":"Qun Wang, Aixia Qian","doi":"10.1186/s13660-024-03086-5","DOIUrl":null,"url":null,"abstract":"We study the following nonlinear mass supercritical Kirchhoff equation: $$ - \\biggl(a+b \\int _{\\mathbb{R}^{N}} \\vert \\nabla u \\vert ^{2} \\biggr) \\triangle u+ \\mu u=f(u) \\quad \\text{in } {\\mathbb{R}^{N}}, $$ where $a ,b,m>0$ are prescribed, and the normalized constrain $\\int _{\\mathbb{R}^{N}}|u|^{2}\\,dx =m$ is satisfied in the case $1\\leq N\\leq 3$ . The nonlinearity f is more general and satisfies weak mass supercritical conditions. Under some mild assumptions, we establish the existence of ground state when $1\\leq N\\leq 3$ and obtain infinitely many radial solutions when $2\\leq N\\leq 3$ by constructing a particular bounded Palais–Smale sequence.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"107 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03086-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the following nonlinear mass supercritical Kirchhoff equation: $$ - \biggl(a+b \int _{\mathbb{R}^{N}} \vert \nabla u \vert ^{2} \biggr) \triangle u+ \mu u=f(u) \quad \text{in } {\mathbb{R}^{N}}, $$ where $a ,b,m>0$ are prescribed, and the normalized constrain $\int _{\mathbb{R}^{N}}|u|^{2}\,dx =m$ is satisfied in the case $1\leq N\leq 3$ . The nonlinearity f is more general and satisfies weak mass supercritical conditions. Under some mild assumptions, we establish the existence of ground state when $1\leq N\leq 3$ and obtain infinitely many radial solutions when $2\leq N\leq 3$ by constructing a particular bounded Palais–Smale sequence.
具有一般非线性的基尔霍夫方程的基态归一化解:质量超临界情况
我们研究了以下非线性质量超临界基尔霍夫方程:$$ - \biggl(a+b \int _{\mathbb{R}^{N}} \vert \nabla u \vert ^{2} \biggr) \triangle u+ \mu u=f(u) \quad \text{in }。{\mathbb{R}^{N}}, $$ 其中$a,b,m>0$是规定的,并且归一化约束$\int _\mathbb{R}^{N}}|u|^{2}\,dx =m$在$1\leq N\leq 3$的情况下是满足的。非线性 f 更为一般,满足弱质量超临界条件。在一些温和的假设条件下,我们确定了当 $1\leq N\leq 3$ 时基态的存在,并通过构造一个特殊的有界 Palais-Smale 序列得到了当 $2\leq N\leq 3$ 时的无穷多个径向解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
6.20%
发文量
136
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信