{"title":"Gaussian Pressure Transients: A Toolkit for Production Forecasting and Optimization of Multi-fractured Well Systems in Shale Formations","authors":"Clement Afagwu, Saad Alafnan, Mohamed Abdalla, Ruud Weijermars","doi":"10.1007/s13369-024-08921-x","DOIUrl":null,"url":null,"abstract":"<p>High development cost of shale fields produced with multi-fractured well systems prompts for improved and faster production forecasting tools. This study advances the use of a Gaussian pressure transient-based reservoir model (GRM). In this new simulator, the migration of reservoir fluids is fully controlled by the hydraulic diffusivity; the value of which can be initially estimated for any particular reservoir by history-matching a Gaussian decline curve to early production data. In a next step, the reservoir model based on the Gaussian pressure transient will compute—from the bottomhole pressures in the well system (imposed by the engineering intervention on the initial reservoir pressure)—the spatial and temporal advance of the pressure depletion and fluid flow near the multistage fractured wells. Real-world data from the Hydraulic Fracture Test Site-1, Midland Basin (West Texas), is utilized to validate the Gaussian solutions in comparison with a commercial simulator through history-matching and a comprehensive sensitivity analysis. The validated GPT method allows for fast iteration of well productivity sensitivity to the placement and orientation of the hydraulic fractures, allowing for proper planning to optimize field development plans.</p>","PeriodicalId":8109,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"5 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s13369-024-08921-x","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
High development cost of shale fields produced with multi-fractured well systems prompts for improved and faster production forecasting tools. This study advances the use of a Gaussian pressure transient-based reservoir model (GRM). In this new simulator, the migration of reservoir fluids is fully controlled by the hydraulic diffusivity; the value of which can be initially estimated for any particular reservoir by history-matching a Gaussian decline curve to early production data. In a next step, the reservoir model based on the Gaussian pressure transient will compute—from the bottomhole pressures in the well system (imposed by the engineering intervention on the initial reservoir pressure)—the spatial and temporal advance of the pressure depletion and fluid flow near the multistage fractured wells. Real-world data from the Hydraulic Fracture Test Site-1, Midland Basin (West Texas), is utilized to validate the Gaussian solutions in comparison with a commercial simulator through history-matching and a comprehensive sensitivity analysis. The validated GPT method allows for fast iteration of well productivity sensitivity to the placement and orientation of the hydraulic fractures, allowing for proper planning to optimize field development plans.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.