Blow up, growth, and decay of solutions for a class of coupled nonlinear viscoelastic Kirchhoff equations with distributed delay and variable exponents
Salah Boulaaras, Abdelbaki Choucha, Djamel Ouchenane, Rashid Jan
{"title":"Blow up, growth, and decay of solutions for a class of coupled nonlinear viscoelastic Kirchhoff equations with distributed delay and variable exponents","authors":"Salah Boulaaras, Abdelbaki Choucha, Djamel Ouchenane, Rashid Jan","doi":"10.1186/s13660-024-03132-2","DOIUrl":null,"url":null,"abstract":"In this work, we consider a quasilinear system of viscoelastic equations with dispersion, source, distributed delay, and variable exponents. Under a suitable hypothesis the blow-up and growth of solutions are proved, and by using an integral inequality due to Komornik the general decay result is obtained in the case of absence of the source term $f_{1}=f_{2}=0$ .","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"75 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03132-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we consider a quasilinear system of viscoelastic equations with dispersion, source, distributed delay, and variable exponents. Under a suitable hypothesis the blow-up and growth of solutions are proved, and by using an integral inequality due to Komornik the general decay result is obtained in the case of absence of the source term $f_{1}=f_{2}=0$ .
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.