{"title":"Holomorphic Regularization of Singularly Perturbed Integro-Differential Equations","authors":"V. S. Besov, V. I. Kachalov","doi":"10.1134/s0012266124010014","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> S.A. Lomov’s regularization method has long been used to solve integro-differential\nsingularly perturbed equations, which are very important from the viewpoint of applications. In\nthis method, the series in powers of a small parameter representing the solutions of these\nequations converge asymptotically. However, in accordance with the main concept of the method,\nto construct a general singular perturbation theory one must indicate conditions for the ordinary\nconvergence of these series. This is the subject of the present paper.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124010014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
S.A. Lomov’s regularization method has long been used to solve integro-differential
singularly perturbed equations, which are very important from the viewpoint of applications. In
this method, the series in powers of a small parameter representing the solutions of these
equations converge asymptotically. However, in accordance with the main concept of the method,
to construct a general singular perturbation theory one must indicate conditions for the ordinary
convergence of these series. This is the subject of the present paper.