The Method of Lyapunov Functionals and the Boundedness of Solutions and Their First and Second Derivatives for a Third-Order Linear Equation of the Volterra Type on the Half-Line

Pub Date : 2024-04-09 DOI:10.1134/s0012266124010087
S. Iskandarov, A. T. Khalilov
{"title":"The Method of Lyapunov Functionals and the Boundedness of Solutions and Their First and Second Derivatives for a Third-Order Linear Equation of the Volterra Type on the Half-Line","authors":"S. Iskandarov, A. T. Khalilov","doi":"10.1134/s0012266124010087","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> Sufficient conditions are established for the boundedness of all solutions and their first two\nderivatives of a third-order linear integro-differential equation of the Volterra type on the half-line.\nTo this end, using a method proposed by the first author in 2006, first, we reduce the equation\nunder consideration to an equivalent system consisting of one first-order differential equation and\none second-order Volterra integro-differential equation. Then a new generalized Lyapunov\nfunctional is proposed for this system, the nonnegativity of this functional on solutions of this\nsystem is proved, and an upper bound is given for the derivative of this functional via the original\nfunctional. The resulting estimate is an integro-differential inequality whose solution gives an\nestimate of the functional.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124010087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sufficient conditions are established for the boundedness of all solutions and their first two derivatives of a third-order linear integro-differential equation of the Volterra type on the half-line. To this end, using a method proposed by the first author in 2006, first, we reduce the equation under consideration to an equivalent system consisting of one first-order differential equation and one second-order Volterra integro-differential equation. Then a new generalized Lyapunov functional is proposed for this system, the nonnegativity of this functional on solutions of this system is proved, and an upper bound is given for the derivative of this functional via the original functional. The resulting estimate is an integro-differential inequality whose solution gives an estimate of the functional.

分享
查看原文
李雅普诺夫函数法与半直线上的 Volterra 型三阶线性方程的解及其一阶和二阶衍生物的有界性
为此,我们利用第一作者在 2006 年提出的方法,首先将所考虑的方程还原为由一个一阶微分方程和一个二阶 Volterra 积分微分方程组成的等价系统。然后为这个系统提出了一个新的广义 Lyapunov 函数,证明了这个函数在这个系统的解上的非负性,并通过原始函数给出了这个函数导数的上界。由此得出的估计值是一个整微分不等式,其解给出了函数的估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信