Solvability of infinite systems of Caputo–Hadamard fractional differential equations in the triple sequence space $$c^3(\triangle )$$

Pub Date : 2024-04-01 DOI:10.1007/s11868-024-00601-6
Hojjatollah Amiri Kayvanloo, Hamid Mehravaran, Mohammad Mursaleen, Reza Allahyari, Asghar Allahyari
{"title":"Solvability of infinite systems of Caputo–Hadamard fractional differential equations in the triple sequence space $$c^3(\\triangle )$$","authors":"Hojjatollah Amiri Kayvanloo, Hamid Mehravaran, Mohammad Mursaleen, Reza Allahyari, Asghar Allahyari","doi":"10.1007/s11868-024-00601-6","DOIUrl":null,"url":null,"abstract":"<p>First, we introduce the concept of triple sequence space <span>\\(c^3(\\triangle )\\)</span> and we define a Hausdorff measure of noncompactness (MNC) on this space. Furthermore, by using this MNC we study the existence of solutions of infinite systems of Caputo–Hadamard fractional differential equations with three point integral boundary conditions in the triple sequence space <span>\\( c^3(\\triangle )\\)</span>. Finally, we give an example to show the effectiveness of our main result.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00601-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

First, we introduce the concept of triple sequence space \(c^3(\triangle )\) and we define a Hausdorff measure of noncompactness (MNC) on this space. Furthermore, by using this MNC we study the existence of solutions of infinite systems of Caputo–Hadamard fractional differential equations with three point integral boundary conditions in the triple sequence space \( c^3(\triangle )\). Finally, we give an example to show the effectiveness of our main result.

分享
查看原文
卡普托-哈达玛德分数微分方程无限系统在三重序列空间 $$c^3(\triangle )$$ 的可解性
首先,我们引入了三重序列空间 \( c^3(\triangle )\) 的概念,并在此空间上定义了非紧凑性的豪斯多夫度量(MNC)。此外,通过使用此 MNC,我们研究了在三重序列空间 \( c^3(\triangle )\) 中具有三点积分边界条件的卡普托-哈达玛德分数微分方程无限系统解的存在性。最后,我们举例说明我们主要结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信