{"title":"Subspace dual and orthogonal frames by action of an abelian group","authors":"Sudipta Sarkar, Niraj K. Shukla","doi":"10.1007/s11868-024-00594-2","DOIUrl":null,"url":null,"abstract":"<p>In this article, we discuss subspace duals of a frame of translates by an action of a closed abelian subgroup <span>\\(\\Gamma \\)</span> of a locally compact group <span>\\({\\mathscr {G}}.\\)</span> These subspace duals are not required to lie in the space generated by the frame. We characterise translation-generated subspace duals of a frame/Riesz basis involving the Zak transform for the pair <span>\\(({\\mathscr {G}}, \\Gamma ).\\)</span> We continue our discussion on the orthogonality of two translation-generated Bessel pairs using the Zak transform, which allows us to explore the dual of super-frames. As an example, we extend our findings to splines, Gabor systems, <i>p</i>-adic fields <span>\\({\\mathbb {Q}} p,\\)</span> locally compact abelian groups using the fiberization map.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00594-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we discuss subspace duals of a frame of translates by an action of a closed abelian subgroup \(\Gamma \) of a locally compact group \({\mathscr {G}}.\) These subspace duals are not required to lie in the space generated by the frame. We characterise translation-generated subspace duals of a frame/Riesz basis involving the Zak transform for the pair \(({\mathscr {G}}, \Gamma ).\) We continue our discussion on the orthogonality of two translation-generated Bessel pairs using the Zak transform, which allows us to explore the dual of super-frames. As an example, we extend our findings to splines, Gabor systems, p-adic fields \({\mathbb {Q}} p,\) locally compact abelian groups using the fiberization map.