Subspace dual and orthogonal frames by action of an abelian group

Pub Date : 2024-04-04 DOI:10.1007/s11868-024-00594-2
Sudipta Sarkar, Niraj K. Shukla
{"title":"Subspace dual and orthogonal frames by action of an abelian group","authors":"Sudipta Sarkar, Niraj K. Shukla","doi":"10.1007/s11868-024-00594-2","DOIUrl":null,"url":null,"abstract":"<p>In this article, we discuss subspace duals of a frame of translates by an action of a closed abelian subgroup <span>\\(\\Gamma \\)</span> of a locally compact group <span>\\({\\mathscr {G}}.\\)</span> These subspace duals are not required to lie in the space generated by the frame. We characterise translation-generated subspace duals of a frame/Riesz basis involving the Zak transform for the pair <span>\\(({\\mathscr {G}}, \\Gamma ).\\)</span> We continue our discussion on the orthogonality of two translation-generated Bessel pairs using the Zak transform, which allows us to explore the dual of super-frames. As an example, we extend our findings to splines, Gabor systems, <i>p</i>-adic fields <span>\\({\\mathbb {Q}} p,\\)</span> locally compact abelian groups using the fiberization map.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00594-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we discuss subspace duals of a frame of translates by an action of a closed abelian subgroup \(\Gamma \) of a locally compact group \({\mathscr {G}}.\) These subspace duals are not required to lie in the space generated by the frame. We characterise translation-generated subspace duals of a frame/Riesz basis involving the Zak transform for the pair \(({\mathscr {G}}, \Gamma ).\) We continue our discussion on the orthogonality of two translation-generated Bessel pairs using the Zak transform, which allows us to explore the dual of super-frames. As an example, we extend our findings to splines, Gabor systems, p-adic fields \({\mathbb {Q}} p,\) locally compact abelian groups using the fiberization map.

分享
查看原文
无性群作用下的子空间对偶和正交框架
在这篇文章中,我们讨论了局部紧凑群 \({\mathscr {G}}.\) 的封闭无边子群 \(\Gamma \) 的作用平移框架的子空间对偶,这些子空间对偶并不需要位于框架生成的空间中。我们描述了涉及扎克变换的一对 \(({\mathscr {G}}, \Gamma ).\) 的框架/雷斯兹基的平移生成子空间对偶的特征。我们利用扎克变换继续讨论两个平移生成的贝塞尔对的正交性,这使我们能够探索超框架的对偶。举例来说,我们利用纤维化映射将我们的发现扩展到花键、Gabor 系统、p-adic 场 \({\mathbb {Q}} p,\)局部紧凑无性群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信