Numerical Semigroups via Projections and via Quotients

Pub Date : 2024-04-15 DOI:10.1007/s00454-024-00643-z
Tristram Bogart, Christopher O’Neill, Kevin Woods
{"title":"Numerical Semigroups via Projections and via Quotients","authors":"Tristram Bogart, Christopher O’Neill, Kevin Woods","doi":"10.1007/s00454-024-00643-z","DOIUrl":null,"url":null,"abstract":"<p>We examine two natural operations to create numerical semigroups. We say that a numerical semigroup <span>\\({\\mathcal {S}}\\)</span> is <i>k</i>-normalescent if it is the projection of the set of integer points in a <i>k</i>-dimensional polyhedral cone, and we say that <span>\\({\\mathcal {S}}\\)</span> is a <i>k</i>-quotient if it is the quotient of a numerical semigroup with <i>k</i> generators. We prove that all <i>k</i>-quotients are <i>k</i>-normalescent, and although the converse is false in general, we prove that the projection of the set of integer points in a cone with <i>k</i> extreme rays (possibly lying in a dimension smaller than <i>k</i>) is a <i>k</i>-quotient. The discrete geometric perspective of studying cones is useful for studying <i>k</i>-quotients: in particular, we use it to prove that the sum of a <span>\\(k_1\\)</span>-quotient and a <span>\\(k_2\\)</span>-quotient is a <span>\\((k_1+k_2)\\)</span>-quotient. In addition, we prove several results about when a numerical semigroup is <i>not</i> <i>k</i>-normalescent.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00643-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We examine two natural operations to create numerical semigroups. We say that a numerical semigroup \({\mathcal {S}}\) is k-normalescent if it is the projection of the set of integer points in a k-dimensional polyhedral cone, and we say that \({\mathcal {S}}\) is a k-quotient if it is the quotient of a numerical semigroup with k generators. We prove that all k-quotients are k-normalescent, and although the converse is false in general, we prove that the projection of the set of integer points in a cone with k extreme rays (possibly lying in a dimension smaller than k) is a k-quotient. The discrete geometric perspective of studying cones is useful for studying k-quotients: in particular, we use it to prove that the sum of a \(k_1\)-quotient and a \(k_2\)-quotient is a \((k_1+k_2)\)-quotient. In addition, we prove several results about when a numerical semigroup is not k-normalescent.

分享
查看原文
通过投影和通过商的数字半群
我们研究了创建数值半群的两种自然操作。如果数字半群 \({\mathcal {S}}\) 是整数点集在 k 维多面体圆锥中的投影,我们就说它是 k 正态的;如果数字半群 \({\mathcal {S}}\) 是具有 k 个生成子的商,我们就说\({\mathcal {S}}\) 是 k 商。我们证明了所有的k-商都是k-正态的,虽然反过来一般是假的,但我们证明了在一个有k条极端射线(可能位于比k小的维度)的圆锥中整数点集的投影是一个k-商。研究圆锥的离散几何视角对于研究 k-商非常有用:特别是,我们用它来证明一个 \(k_1\)- 商与一个 \(k_2\)- 商的和是\((k_1+k_2)\)-商。此外,我们还证明了关于数值半群不是 k-normalescent 的几个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信