{"title":"Numerical Semigroups via Projections and via Quotients","authors":"Tristram Bogart, Christopher O’Neill, Kevin Woods","doi":"10.1007/s00454-024-00643-z","DOIUrl":null,"url":null,"abstract":"<p>We examine two natural operations to create numerical semigroups. We say that a numerical semigroup <span>\\({\\mathcal {S}}\\)</span> is <i>k</i>-normalescent if it is the projection of the set of integer points in a <i>k</i>-dimensional polyhedral cone, and we say that <span>\\({\\mathcal {S}}\\)</span> is a <i>k</i>-quotient if it is the quotient of a numerical semigroup with <i>k</i> generators. We prove that all <i>k</i>-quotients are <i>k</i>-normalescent, and although the converse is false in general, we prove that the projection of the set of integer points in a cone with <i>k</i> extreme rays (possibly lying in a dimension smaller than <i>k</i>) is a <i>k</i>-quotient. The discrete geometric perspective of studying cones is useful for studying <i>k</i>-quotients: in particular, we use it to prove that the sum of a <span>\\(k_1\\)</span>-quotient and a <span>\\(k_2\\)</span>-quotient is a <span>\\((k_1+k_2)\\)</span>-quotient. In addition, we prove several results about when a numerical semigroup is <i>not</i> <i>k</i>-normalescent.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00643-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We examine two natural operations to create numerical semigroups. We say that a numerical semigroup \({\mathcal {S}}\) is k-normalescent if it is the projection of the set of integer points in a k-dimensional polyhedral cone, and we say that \({\mathcal {S}}\) is a k-quotient if it is the quotient of a numerical semigroup with k generators. We prove that all k-quotients are k-normalescent, and although the converse is false in general, we prove that the projection of the set of integer points in a cone with k extreme rays (possibly lying in a dimension smaller than k) is a k-quotient. The discrete geometric perspective of studying cones is useful for studying k-quotients: in particular, we use it to prove that the sum of a \(k_1\)-quotient and a \(k_2\)-quotient is a \((k_1+k_2)\)-quotient. In addition, we prove several results about when a numerical semigroup is notk-normalescent.