{"title":"Computing Instance-Optimal Kernels in Two Dimensions","authors":"Pankaj K. Agarwal, Sariel Har-Peled","doi":"10.1007/s00454-024-00637-x","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(P\\)</span> be a set of <i>n</i> points in <span>\\(\\mathbb {R}^2\\)</span>. For a parameter <span>\\(\\varepsilon \\in (0,1)\\)</span>, a subset <span>\\(C\\subseteq P\\)</span> is an <span>\\(\\varepsilon \\)</span>-<i>kernel</i> of <span>\\(P\\)</span> if the projection of the convex hull of <span>\\(C\\)</span> approximates that of <span>\\(P\\)</span> within <span>\\((1-\\varepsilon )\\)</span>-factor in every direction. The set <span>\\(C\\)</span> is a <i>weak</i> <span>\\(\\varepsilon \\)</span><i>-kernel</i> of <span>\\(P\\)</span> if its directional width approximates that of <span>\\(P\\)</span> in every direction. Let <span>\\(\\textsf{k}_{\\varepsilon }(P)\\)</span> (resp. <span>\\(\\textsf{k}^{\\textsf{w}}_{\\varepsilon }(P)\\)</span>) denote the minimum-size of an <span>\\(\\varepsilon \\)</span>-kernel (resp. weak <span>\\(\\varepsilon \\)</span>-kernel) of <span>\\(P\\)</span>. We present an <span>\\(O(n\\textsf{k}_{\\varepsilon }(P)\\log n)\\)</span>-time algorithm for computing an <span>\\(\\varepsilon \\)</span>-kernel of <span>\\(P\\)</span> of size <span>\\(\\textsf{k}_{\\varepsilon }(P)\\)</span>, and an <span>\\(O(n^2\\log n)\\)</span>-time algorithm for computing a weak <span>\\(\\varepsilon \\)</span>-kernel of <span>\\(P\\)</span> of size <span>\\(\\textsf{k}^{\\textsf{w}}_{\\varepsilon }(P)\\)</span>. We also present a fast algorithm for the Hausdorff variant of this problem. In addition, we introduce the notion of <span>\\(\\varepsilon \\)</span>-<i>core</i>, a convex polygon lying inside , prove that it is a good approximation of the optimal <span>\\(\\varepsilon \\)</span>-kernel, present an efficient algorithm for computing it, and use it to compute an <span>\\(\\varepsilon \\)</span>-kernel of small size.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00637-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let \(P\) be a set of n points in \(\mathbb {R}^2\). For a parameter \(\varepsilon \in (0,1)\), a subset \(C\subseteq P\) is an \(\varepsilon \)-kernel of \(P\) if the projection of the convex hull of \(C\) approximates that of \(P\) within \((1-\varepsilon )\)-factor in every direction. The set \(C\) is a weak\(\varepsilon \)-kernel of \(P\) if its directional width approximates that of \(P\) in every direction. Let \(\textsf{k}_{\varepsilon }(P)\) (resp. \(\textsf{k}^{\textsf{w}}_{\varepsilon }(P)\)) denote the minimum-size of an \(\varepsilon \)-kernel (resp. weak \(\varepsilon \)-kernel) of \(P\). We present an \(O(n\textsf{k}_{\varepsilon }(P)\log n)\)-time algorithm for computing an \(\varepsilon \)-kernel of \(P\) of size \(\textsf{k}_{\varepsilon }(P)\), and an \(O(n^2\log n)\)-time algorithm for computing a weak \(\varepsilon \)-kernel of \(P\) of size \(\textsf{k}^{\textsf{w}}_{\varepsilon }(P)\). We also present a fast algorithm for the Hausdorff variant of this problem. In addition, we introduce the notion of \(\varepsilon \)-core, a convex polygon lying inside , prove that it is a good approximation of the optimal \(\varepsilon \)-kernel, present an efficient algorithm for computing it, and use it to compute an \(\varepsilon \)-kernel of small size.