Computing Instance-Optimal Kernels in Two Dimensions

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Pankaj K. Agarwal, Sariel Har-Peled
{"title":"Computing Instance-Optimal Kernels in Two Dimensions","authors":"Pankaj K. Agarwal, Sariel Har-Peled","doi":"10.1007/s00454-024-00637-x","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(P\\)</span> be a set of <i>n</i> points in <span>\\(\\mathbb {R}^2\\)</span>. For a parameter <span>\\(\\varepsilon \\in (0,1)\\)</span>, a subset <span>\\(C\\subseteq P\\)</span> is an <span>\\(\\varepsilon \\)</span>-<i>kernel</i> of <span>\\(P\\)</span> if the projection of the convex hull of <span>\\(C\\)</span> approximates that of <span>\\(P\\)</span> within <span>\\((1-\\varepsilon )\\)</span>-factor in every direction. The set <span>\\(C\\)</span> is a <i>weak</i> <span>\\(\\varepsilon \\)</span><i>-kernel</i> of <span>\\(P\\)</span> if its directional width approximates that of <span>\\(P\\)</span> in every direction. Let <span>\\(\\textsf{k}_{\\varepsilon }(P)\\)</span> (resp. <span>\\(\\textsf{k}^{\\textsf{w}}_{\\varepsilon }(P)\\)</span>) denote the minimum-size of an <span>\\(\\varepsilon \\)</span>-kernel (resp. weak <span>\\(\\varepsilon \\)</span>-kernel) of <span>\\(P\\)</span>. We present an <span>\\(O(n\\textsf{k}_{\\varepsilon }(P)\\log n)\\)</span>-time algorithm for computing an <span>\\(\\varepsilon \\)</span>-kernel of <span>\\(P\\)</span> of size <span>\\(\\textsf{k}_{\\varepsilon }(P)\\)</span>, and an <span>\\(O(n^2\\log n)\\)</span>-time algorithm for computing a weak <span>\\(\\varepsilon \\)</span>-kernel of <span>\\(P\\)</span> of size <span>\\(\\textsf{k}^{\\textsf{w}}_{\\varepsilon }(P)\\)</span>. We also present a fast algorithm for the Hausdorff variant of this problem. In addition, we introduce the notion of <span>\\(\\varepsilon \\)</span>-<i>core</i>, a convex polygon lying inside , prove that it is a good approximation of the optimal <span>\\(\\varepsilon \\)</span>-kernel, present an efficient algorithm for computing it, and use it to compute an <span>\\(\\varepsilon \\)</span>-kernel of small size.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"247 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00637-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(P\) be a set of n points in \(\mathbb {R}^2\). For a parameter \(\varepsilon \in (0,1)\), a subset \(C\subseteq P\) is an \(\varepsilon \)-kernel of \(P\) if the projection of the convex hull of \(C\) approximates that of \(P\) within \((1-\varepsilon )\)-factor in every direction. The set \(C\) is a weak \(\varepsilon \)-kernel of \(P\) if its directional width approximates that of \(P\) in every direction. Let \(\textsf{k}_{\varepsilon }(P)\) (resp. \(\textsf{k}^{\textsf{w}}_{\varepsilon }(P)\)) denote the minimum-size of an \(\varepsilon \)-kernel (resp. weak \(\varepsilon \)-kernel) of \(P\). We present an \(O(n\textsf{k}_{\varepsilon }(P)\log n)\)-time algorithm for computing an \(\varepsilon \)-kernel of \(P\) of size \(\textsf{k}_{\varepsilon }(P)\), and an \(O(n^2\log n)\)-time algorithm for computing a weak \(\varepsilon \)-kernel of \(P\) of size \(\textsf{k}^{\textsf{w}}_{\varepsilon }(P)\). We also present a fast algorithm for the Hausdorff variant of this problem. In addition, we introduce the notion of \(\varepsilon \)-core, a convex polygon lying inside , prove that it is a good approximation of the optimal \(\varepsilon \)-kernel, present an efficient algorithm for computing it, and use it to compute an \(\varepsilon \)-kernel of small size.

Abstract Image

计算二维中的实例最优内核
让(P)是(\mathbb {R}^2\ )中n个点的集合。对于一个参数\((0,1)\),如果\(C\)的凸面投影在每个方向上都在\((1-\varepsilon )\)-因子的范围内近似于\(P\)的凸面投影,那么子集\(C\subseteq P\) 就是\(P\)的\((1-\varepsilon )\)-核。如果在每个方向上,它的方向宽度都近似于(P)的方向宽度,那么这个集合(C)就是(P)的弱((1-\varepsilon)-核)。让 \(\textsf{k}_{\varepsilon }(P)\) (resp. \(\textsf{k}^{\textsf{w}}_{\varepsilon }(P)\)) 表示 \(\varepsilon \)-内核(respect. weak \(\varepsilon \)-内核)的最小尺寸。我们提出了一个 \(O(ntextsf{k}_{\varepsilon }(P)\log n)\)-time算法来计算大小为 \(\textsf{k}_{\varepsilon }(P)\) 的(P)的(\(\varepsilon \)-核)、以及计算大小为(textsf{k}^{textsf{w}}_{\varepsilon }(P))的弱(\varepsilon)-核的(O(n^2\log n))-时间算法。我们还为这个问题的 Hausdorff 变体提出了一种快速算法。此外,我们还引入了 \(\varepsilon \)-核的概念,即一个位于内部的凸多边形,证明它是最优 \(\varepsilon \)-核的良好近似,提出了计算它的高效算法,并用它来计算小尺寸的 \(\varepsilon \)-核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信