Computing Instance-Optimal Kernels in Two Dimensions

Pub Date : 2024-04-07 DOI:10.1007/s00454-024-00637-x
Pankaj K. Agarwal, Sariel Har-Peled
{"title":"Computing Instance-Optimal Kernels in Two Dimensions","authors":"Pankaj K. Agarwal, Sariel Har-Peled","doi":"10.1007/s00454-024-00637-x","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(P\\)</span> be a set of <i>n</i> points in <span>\\(\\mathbb {R}^2\\)</span>. For a parameter <span>\\(\\varepsilon \\in (0,1)\\)</span>, a subset <span>\\(C\\subseteq P\\)</span> is an <span>\\(\\varepsilon \\)</span>-<i>kernel</i> of <span>\\(P\\)</span> if the projection of the convex hull of <span>\\(C\\)</span> approximates that of <span>\\(P\\)</span> within <span>\\((1-\\varepsilon )\\)</span>-factor in every direction. The set <span>\\(C\\)</span> is a <i>weak</i> <span>\\(\\varepsilon \\)</span><i>-kernel</i> of <span>\\(P\\)</span> if its directional width approximates that of <span>\\(P\\)</span> in every direction. Let <span>\\(\\textsf{k}_{\\varepsilon }(P)\\)</span> (resp. <span>\\(\\textsf{k}^{\\textsf{w}}_{\\varepsilon }(P)\\)</span>) denote the minimum-size of an <span>\\(\\varepsilon \\)</span>-kernel (resp. weak <span>\\(\\varepsilon \\)</span>-kernel) of <span>\\(P\\)</span>. We present an <span>\\(O(n\\textsf{k}_{\\varepsilon }(P)\\log n)\\)</span>-time algorithm for computing an <span>\\(\\varepsilon \\)</span>-kernel of <span>\\(P\\)</span> of size <span>\\(\\textsf{k}_{\\varepsilon }(P)\\)</span>, and an <span>\\(O(n^2\\log n)\\)</span>-time algorithm for computing a weak <span>\\(\\varepsilon \\)</span>-kernel of <span>\\(P\\)</span> of size <span>\\(\\textsf{k}^{\\textsf{w}}_{\\varepsilon }(P)\\)</span>. We also present a fast algorithm for the Hausdorff variant of this problem. In addition, we introduce the notion of <span>\\(\\varepsilon \\)</span>-<i>core</i>, a convex polygon lying inside , prove that it is a good approximation of the optimal <span>\\(\\varepsilon \\)</span>-kernel, present an efficient algorithm for computing it, and use it to compute an <span>\\(\\varepsilon \\)</span>-kernel of small size.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00637-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(P\) be a set of n points in \(\mathbb {R}^2\). For a parameter \(\varepsilon \in (0,1)\), a subset \(C\subseteq P\) is an \(\varepsilon \)-kernel of \(P\) if the projection of the convex hull of \(C\) approximates that of \(P\) within \((1-\varepsilon )\)-factor in every direction. The set \(C\) is a weak \(\varepsilon \)-kernel of \(P\) if its directional width approximates that of \(P\) in every direction. Let \(\textsf{k}_{\varepsilon }(P)\) (resp. \(\textsf{k}^{\textsf{w}}_{\varepsilon }(P)\)) denote the minimum-size of an \(\varepsilon \)-kernel (resp. weak \(\varepsilon \)-kernel) of \(P\). We present an \(O(n\textsf{k}_{\varepsilon }(P)\log n)\)-time algorithm for computing an \(\varepsilon \)-kernel of \(P\) of size \(\textsf{k}_{\varepsilon }(P)\), and an \(O(n^2\log n)\)-time algorithm for computing a weak \(\varepsilon \)-kernel of \(P\) of size \(\textsf{k}^{\textsf{w}}_{\varepsilon }(P)\). We also present a fast algorithm for the Hausdorff variant of this problem. In addition, we introduce the notion of \(\varepsilon \)-core, a convex polygon lying inside , prove that it is a good approximation of the optimal \(\varepsilon \)-kernel, present an efficient algorithm for computing it, and use it to compute an \(\varepsilon \)-kernel of small size.

Abstract Image

分享
查看原文
计算二维中的实例最优内核
让(P)是(\mathbb {R}^2\ )中n个点的集合。对于一个参数\((0,1)\),如果\(C\)的凸面投影在每个方向上都在\((1-\varepsilon )\)-因子的范围内近似于\(P\)的凸面投影,那么子集\(C\subseteq P\) 就是\(P\)的\((1-\varepsilon )\)-核。如果在每个方向上,它的方向宽度都近似于(P)的方向宽度,那么这个集合(C)就是(P)的弱((1-\varepsilon)-核)。让 \(\textsf{k}_{\varepsilon }(P)\) (resp. \(\textsf{k}^{\textsf{w}}_{\varepsilon }(P)\)) 表示 \(\varepsilon \)-内核(respect. weak \(\varepsilon \)-内核)的最小尺寸。我们提出了一个 \(O(ntextsf{k}_{\varepsilon }(P)\log n)\)-time算法来计算大小为 \(\textsf{k}_{\varepsilon }(P)\) 的(P)的(\(\varepsilon \)-核)、以及计算大小为(textsf{k}^{textsf{w}}_{\varepsilon }(P))的弱(\varepsilon)-核的(O(n^2\log n))-时间算法。我们还为这个问题的 Hausdorff 变体提出了一种快速算法。此外,我们还引入了 \(\varepsilon \)-核的概念,即一个位于内部的凸多边形,证明它是最优 \(\varepsilon \)-核的良好近似,提出了计算它的高效算法,并用它来计算小尺寸的 \(\varepsilon \)-核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信