Affine Stresses: The Partition of Unity and Kalai’s Reconstruction Conjectures

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Isabella Novik, Hailun Zheng
{"title":"Affine Stresses: The Partition of Unity and Kalai’s Reconstruction Conjectures","authors":"Isabella Novik, Hailun Zheng","doi":"10.1007/s00454-024-00642-0","DOIUrl":null,"url":null,"abstract":"<p>Kalai conjectured that if <i>P</i> is a simplicial <i>d</i>-polytope that has no missing faces of dimension <span>\\(d-1\\)</span>, then the graph of <i>P</i> and the space of affine 2-stresses of <i>P</i> determine <i>P</i> up to affine equivalence. We propose a higher-dimensional generalization of this conjecture: if <span>\\(2\\le i\\le d/2\\)</span> and <i>P</i> is a simplicial <i>d</i>-polytope that has no missing faces of dimension <span>\\(\\ge d-i+1\\)</span>, then the space of affine <i>i</i>-stresses of <i>P</i> determines the space of affine 1-stresses of <i>P</i>. We prove this conjecture for (1) <i>k</i>-stacked <i>d</i>-polytopes with <span>\\(2\\le i\\le k\\le d/2-1\\)</span>, (2) <i>d</i>-polytopes that have no missing faces of dimension <span>\\(\\ge d-2i+2\\)</span>, and (3) flag PL <span>\\((d-1)\\)</span>-spheres with generic embeddings (for all <span>\\(2\\le i\\le d/2\\)</span>). We also discuss several related results and conjectures. For instance, we show that if <i>P</i> is a simplicial <i>d</i>-polytope that has no missing faces of dimension <span>\\(\\ge d-2i+2\\)</span>, then the <span>\\((i-1)\\)</span>-skeleton of <i>P</i> and the set of sign vectors of affine <i>i</i>-stresses of <i>P</i> determine the combinatorial type of <i>P</i>. Along the way, we establish the partition of unity of affine stresses: for any <span>\\(1\\le i\\le (d-1)/2\\)</span>, the space of affine <i>i</i>-stresses of a simplicial <i>d</i>-polytope as well as the space of affine <i>i</i>-stresses of a simplicial <span>\\((d-1)\\)</span>-sphere (with a generic embedding) can be expressed as the sum of affine <i>i</i>-stress spaces of vertex stars. This is analogous to Adiprasito’s partition of unity of linear stresses for Cohen–Macaulay complexes.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"107 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00642-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Kalai conjectured that if P is a simplicial d-polytope that has no missing faces of dimension \(d-1\), then the graph of P and the space of affine 2-stresses of P determine P up to affine equivalence. We propose a higher-dimensional generalization of this conjecture: if \(2\le i\le d/2\) and P is a simplicial d-polytope that has no missing faces of dimension \(\ge d-i+1\), then the space of affine i-stresses of P determines the space of affine 1-stresses of P. We prove this conjecture for (1) k-stacked d-polytopes with \(2\le i\le k\le d/2-1\), (2) d-polytopes that have no missing faces of dimension \(\ge d-2i+2\), and (3) flag PL \((d-1)\)-spheres with generic embeddings (for all \(2\le i\le d/2\)). We also discuss several related results and conjectures. For instance, we show that if P is a simplicial d-polytope that has no missing faces of dimension \(\ge d-2i+2\), then the \((i-1)\)-skeleton of P and the set of sign vectors of affine i-stresses of P determine the combinatorial type of P. Along the way, we establish the partition of unity of affine stresses: for any \(1\le i\le (d-1)/2\), the space of affine i-stresses of a simplicial d-polytope as well as the space of affine i-stresses of a simplicial \((d-1)\)-sphere (with a generic embedding) can be expressed as the sum of affine i-stress spaces of vertex stars. This is analogous to Adiprasito’s partition of unity of linear stresses for Cohen–Macaulay complexes.

仿应力:统一的分割与卡莱的重构猜想
Kalai 猜想,如果 P 是一个没有维数 \(d-1\)的缺失面的简单 d 多面体,那么 P 的图和 P 的仿射 2 应力空间决定了 P 的仿射等价性。我们提出了这个猜想的高维概括:如果 \(2\le i\le d/2\) 并且 P 是一个简单的 d 多面体,没有维数为 \(\ge d-i+1\) 的缺失面,那么 P 的仿射 i 应力空间就决定了 P 的仿射 1 应力空间。我们证明了这个猜想适用于(1)具有(2)维度(ge d-2i+2)的k层叠d多面体,(2)没有缺失面的(ge d-2i+2)维度的d多面体,以及(3)具有通用嵌入的旗形PL((d-1)\)球体(适用于所有的(2)维度)。我们还讨论了几个相关结果和猜想。例如,我们证明了如果 P 是一个没有维数为 \(\ge d-2i+2\) 的缺失面的简单 d 多面体,那么 P 的 \((i-1)\)-骨架和 P 的仿射 i 应力的符号向量集决定了 P 的组合类型。在此过程中,我们建立了仿射应力的统一分区:对于任意的(1\le i\le (d-1)/2\),简单d多面体的仿射应力空间以及简单(((d-1)\)球体(具有一般嵌入)的仿射应力空间都可以表示为顶点星的仿射应力空间之和。这类似于阿迪普拉希托对科恩-麦考莱复数的线性应力的统一分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信