Affine Stresses: The Partition of Unity and Kalai’s Reconstruction Conjectures

Pub Date : 2024-04-12 DOI:10.1007/s00454-024-00642-0
Isabella Novik, Hailun Zheng
{"title":"Affine Stresses: The Partition of Unity and Kalai’s Reconstruction Conjectures","authors":"Isabella Novik, Hailun Zheng","doi":"10.1007/s00454-024-00642-0","DOIUrl":null,"url":null,"abstract":"<p>Kalai conjectured that if <i>P</i> is a simplicial <i>d</i>-polytope that has no missing faces of dimension <span>\\(d-1\\)</span>, then the graph of <i>P</i> and the space of affine 2-stresses of <i>P</i> determine <i>P</i> up to affine equivalence. We propose a higher-dimensional generalization of this conjecture: if <span>\\(2\\le i\\le d/2\\)</span> and <i>P</i> is a simplicial <i>d</i>-polytope that has no missing faces of dimension <span>\\(\\ge d-i+1\\)</span>, then the space of affine <i>i</i>-stresses of <i>P</i> determines the space of affine 1-stresses of <i>P</i>. We prove this conjecture for (1) <i>k</i>-stacked <i>d</i>-polytopes with <span>\\(2\\le i\\le k\\le d/2-1\\)</span>, (2) <i>d</i>-polytopes that have no missing faces of dimension <span>\\(\\ge d-2i+2\\)</span>, and (3) flag PL <span>\\((d-1)\\)</span>-spheres with generic embeddings (for all <span>\\(2\\le i\\le d/2\\)</span>). We also discuss several related results and conjectures. For instance, we show that if <i>P</i> is a simplicial <i>d</i>-polytope that has no missing faces of dimension <span>\\(\\ge d-2i+2\\)</span>, then the <span>\\((i-1)\\)</span>-skeleton of <i>P</i> and the set of sign vectors of affine <i>i</i>-stresses of <i>P</i> determine the combinatorial type of <i>P</i>. Along the way, we establish the partition of unity of affine stresses: for any <span>\\(1\\le i\\le (d-1)/2\\)</span>, the space of affine <i>i</i>-stresses of a simplicial <i>d</i>-polytope as well as the space of affine <i>i</i>-stresses of a simplicial <span>\\((d-1)\\)</span>-sphere (with a generic embedding) can be expressed as the sum of affine <i>i</i>-stress spaces of vertex stars. This is analogous to Adiprasito’s partition of unity of linear stresses for Cohen–Macaulay complexes.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00642-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Kalai conjectured that if P is a simplicial d-polytope that has no missing faces of dimension \(d-1\), then the graph of P and the space of affine 2-stresses of P determine P up to affine equivalence. We propose a higher-dimensional generalization of this conjecture: if \(2\le i\le d/2\) and P is a simplicial d-polytope that has no missing faces of dimension \(\ge d-i+1\), then the space of affine i-stresses of P determines the space of affine 1-stresses of P. We prove this conjecture for (1) k-stacked d-polytopes with \(2\le i\le k\le d/2-1\), (2) d-polytopes that have no missing faces of dimension \(\ge d-2i+2\), and (3) flag PL \((d-1)\)-spheres with generic embeddings (for all \(2\le i\le d/2\)). We also discuss several related results and conjectures. For instance, we show that if P is a simplicial d-polytope that has no missing faces of dimension \(\ge d-2i+2\), then the \((i-1)\)-skeleton of P and the set of sign vectors of affine i-stresses of P determine the combinatorial type of P. Along the way, we establish the partition of unity of affine stresses: for any \(1\le i\le (d-1)/2\), the space of affine i-stresses of a simplicial d-polytope as well as the space of affine i-stresses of a simplicial \((d-1)\)-sphere (with a generic embedding) can be expressed as the sum of affine i-stress spaces of vertex stars. This is analogous to Adiprasito’s partition of unity of linear stresses for Cohen–Macaulay complexes.

分享
查看原文
仿应力:统一的分割与卡莱的重构猜想
Kalai 猜想,如果 P 是一个没有维数 \(d-1\)的缺失面的简单 d 多面体,那么 P 的图和 P 的仿射 2 应力空间决定了 P 的仿射等价性。我们提出了这个猜想的高维概括:如果 \(2\le i\le d/2\) 并且 P 是一个简单的 d 多面体,没有维数为 \(\ge d-i+1\) 的缺失面,那么 P 的仿射 i 应力空间就决定了 P 的仿射 1 应力空间。我们证明了这个猜想适用于(1)具有(2)维度(ge d-2i+2)的k层叠d多面体,(2)没有缺失面的(ge d-2i+2)维度的d多面体,以及(3)具有通用嵌入的旗形PL((d-1)\)球体(适用于所有的(2)维度)。我们还讨论了几个相关结果和猜想。例如,我们证明了如果 P 是一个没有维数为 \(\ge d-2i+2\) 的缺失面的简单 d 多面体,那么 P 的 \((i-1)\)-骨架和 P 的仿射 i 应力的符号向量集决定了 P 的组合类型。在此过程中,我们建立了仿射应力的统一分区:对于任意的(1\le i\le (d-1)/2\),简单d多面体的仿射应力空间以及简单(((d-1)\)球体(具有一般嵌入)的仿射应力空间都可以表示为顶点星的仿射应力空间之和。这类似于阿迪普拉希托对科恩-麦考莱复数的线性应力的统一分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信