P. V. Panin, E. A. Lukina, S. A. Naprienko, E. B. Alekseev
{"title":"Effect of Heat Treatment on the Structure and Properties of Titanium Aluminide Alloy Ti–Al–V–Nb–Cr–Gd Produced by Selective Electron Beam Melting","authors":"P. V. Panin, E. A. Lukina, S. A. Naprienko, E. B. Alekseev","doi":"10.1134/S102995992402005X","DOIUrl":null,"url":null,"abstract":"<p>This study examines the influence of hot isostatic pressing and heat treatment on the microstructure and mechanical properties of specimens manufactured by selective electron beam melting (SEBM) of the metal powder composition (MPC fraction 40–100 μm) of a new six-component intermetallic beta-solidifying TiAl alloy Ti–44.5Al–2V–1Nb–2Cr–0.1Gd, at % (Ti–31.0Al–2.5V–2.5Nb–2.5Cr–0.4Gd, wt %). It is shown that SEBM with a high line energy input (<i>E</i><sub>L</sub> <i>=</i> 285 J/m) produces a fine-grained microstructure in the as-built material with a grain size of 5–14 μm and residual porosity of less than 0.5 vol %. An increase in the electron beam current (<i>I</i>) from 9.5 to 19.0 mA intensifies Al evaporation, as a result, the fraction of large columnar grains (<i>d</i> = 30–100 μm in width, <i>h</i> = 150–400 µm in height) formed mainly in Al-depleted regions (layers) increases. Heat treatment of the as-built SEBM specimens by two-stage annealing in the (α + γ)- and (α<sub>2</sub> + γ + β)-phase fields or by thermal cycling in the (α + γ)-phase field leads to complete or partial fragmentation of columnar grains. Combined postprocessing of the specimens produced at lower <i>I</i> by hot isostatic pressing in the α-phase field and two-stage annealing completely eliminates residual porosity and transforms the columnar structure into a fine-grained one with the grain size less than 150 μm. As a result, the achieved short-term mechanical characteristics at 20°С (UTS = 525 ± 5 MPa, δ = 1.1%) and 750°С (UTS = 405 ± 10 MPa, δ = 3.8%) are comparable to those of the studied TiAl alloy in the as-cast state.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 2","pages":"163 - 174"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S102995992402005X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the influence of hot isostatic pressing and heat treatment on the microstructure and mechanical properties of specimens manufactured by selective electron beam melting (SEBM) of the metal powder composition (MPC fraction 40–100 μm) of a new six-component intermetallic beta-solidifying TiAl alloy Ti–44.5Al–2V–1Nb–2Cr–0.1Gd, at % (Ti–31.0Al–2.5V–2.5Nb–2.5Cr–0.4Gd, wt %). It is shown that SEBM with a high line energy input (EL= 285 J/m) produces a fine-grained microstructure in the as-built material with a grain size of 5–14 μm and residual porosity of less than 0.5 vol %. An increase in the electron beam current (I) from 9.5 to 19.0 mA intensifies Al evaporation, as a result, the fraction of large columnar grains (d = 30–100 μm in width, h = 150–400 µm in height) formed mainly in Al-depleted regions (layers) increases. Heat treatment of the as-built SEBM specimens by two-stage annealing in the (α + γ)- and (α2 + γ + β)-phase fields or by thermal cycling in the (α + γ)-phase field leads to complete or partial fragmentation of columnar grains. Combined postprocessing of the specimens produced at lower I by hot isostatic pressing in the α-phase field and two-stage annealing completely eliminates residual porosity and transforms the columnar structure into a fine-grained one with the grain size less than 150 μm. As a result, the achieved short-term mechanical characteristics at 20°С (UTS = 525 ± 5 MPa, δ = 1.1%) and 750°С (UTS = 405 ± 10 MPa, δ = 3.8%) are comparable to those of the studied TiAl alloy in the as-cast state.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.