The Brioschi Formula for the Gaussian Curvature

Lee-Peng Teo
{"title":"The Brioschi Formula for the Gaussian Curvature","authors":"Lee-Peng Teo","doi":"arxiv-2404.00835","DOIUrl":null,"url":null,"abstract":"The Brioschi formula expresses the Gaussian curvature $K$ in terms of the\nfunctions $E, F$ and $G$ in local coordinates of a surface $S$. This implies\nthe Gauss' theorema egregium, which says that the Gaussian curvature just\ndepends on angles, distances, and their rates of change. In most of the textbooks, the Gauss' theorema egregium was proved as a\ncorollary to the derivation of the Gauss equations, a set of equations\nexpressing $EK, FK$ and $GK$ in terms of the Christoffel symbols. The\nChristoffel symbols can be expressed in terms of $E$, $F$ and $G$. In\nprinciple, one can derive the Brioschi formula from the Gauss equations after\nsome tedious calculations. In this note, we give a direct elementary proof of the Brioschi formula\nwithout using Christoffel symbols. The key to the proof are properties of\nmatrices and determinants.","PeriodicalId":501462,"journal":{"name":"arXiv - MATH - History and Overview","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.00835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Brioschi formula expresses the Gaussian curvature $K$ in terms of the functions $E, F$ and $G$ in local coordinates of a surface $S$. This implies the Gauss' theorema egregium, which says that the Gaussian curvature just depends on angles, distances, and their rates of change. In most of the textbooks, the Gauss' theorema egregium was proved as a corollary to the derivation of the Gauss equations, a set of equations expressing $EK, FK$ and $GK$ in terms of the Christoffel symbols. The Christoffel symbols can be expressed in terms of $E$, $F$ and $G$. In principle, one can derive the Brioschi formula from the Gauss equations after some tedious calculations. In this note, we give a direct elementary proof of the Brioschi formula without using Christoffel symbols. The key to the proof are properties of matrices and determinants.
高斯曲率的布里奥斯奇公式
布里俄斯基公式用曲面$S$局部坐标中的函数$E、F$和$G$来表示高斯曲率$K$。这意味着高斯的egregium定理,即高斯曲率只取决于角度、距离及其变化率。在大多数教科书中,高斯定理都是作为推导高斯方程的必然结果来证明的,高斯方程是一组用克里斯托弗符号表示 $EK、FK$ 和 $GK$ 的方程。克里斯托弗符号可以用 $E$、$F$ 和 $G$ 表示。原则上,经过一些繁琐的计算,我们可以从高斯方程推导出布里俄斯基公式。在本说明中,我们给出了布里俄斯基公式的直接基本证明,而无需使用克里斯托弗符号。证明的关键是矩阵和行列式的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信