In Theodorus' Spiral no two hypothenusa lie on the same line

Frederik Stouten
{"title":"In Theodorus' Spiral no two hypothenusa lie on the same line","authors":"Frederik Stouten","doi":"arxiv-2403.20207","DOIUrl":null,"url":null,"abstract":"Consider the rectangular triangle with sides with length 1 and 1, then the\noblique side has length square root of 2. Now construct on top of the oblique\nside, a new rectangular triangle with the oblique side as rectangle side and a\nsecond rectangle side of length 1. Continue this process indefinitely, what you\nget is called \"the spiral of Theodorus\". Now the question is: Can there be two\nhypothenusa (oblique sides) which lie on the same line? Apparently there can't.\nA proof of this proposition was given in 1958, but to our knowledge no other\nproofs are available. Since we had no access to the journal, we wanted to prove\nit again.","PeriodicalId":501462,"journal":{"name":"arXiv - MATH - History and Overview","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.20207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Consider the rectangular triangle with sides with length 1 and 1, then the oblique side has length square root of 2. Now construct on top of the oblique side, a new rectangular triangle with the oblique side as rectangle side and a second rectangle side of length 1. Continue this process indefinitely, what you get is called "the spiral of Theodorus". Now the question is: Can there be two hypothenusa (oblique sides) which lie on the same line? Apparently there can't. A proof of this proposition was given in 1958, but to our knowledge no other proofs are available. Since we had no access to the journal, we wanted to prove it again.
在狄奥多罗斯的螺旋中,没有两个斜面位于同一条直线上
现在在斜边的基础上,以斜边为矩形边,再以长度为 1 的矩形边,构造一个新的矩形三角形。现在的问题是:能否有两条斜边位于同一条直线上?显然不可能。1958 年,有人给出了这一命题的证明,但据我们所知,还没有其他的证明。由于我们无法获得该杂志,所以想再次证明它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信