Temperature Dependence of the Deformation Behavior of High-Entropy Alloys Co20Cr20Fe20Mn20Ni20, Co19Cr20Fe20Mn20Ni20С1, and Co17Cr20Fe20Mn20Ni20С3. Mechanical Properties and Temperature Dependence of Yield Stress

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
E. G. Astafurova, K. A. Reunova, S. V. Astafurov, D. O. Astapov
{"title":"Temperature Dependence of the Deformation Behavior of High-Entropy Alloys Co20Cr20Fe20Mn20Ni20, Co19Cr20Fe20Mn20Ni20С1, and Co17Cr20Fe20Mn20Ni20С3. Mechanical Properties and Temperature Dependence of Yield Stress","authors":"E. G. Astafurova,&nbsp;K. A. Reunova,&nbsp;S. V. Astafurov,&nbsp;D. O. Astapov","doi":"10.1134/S1029959924020012","DOIUrl":null,"url":null,"abstract":"<p>This paper discusses the temperature dependence of the mechanical properties of multicomponent alloys Co<sub>20</sub>Cr<sub>20</sub>Fe<sub>20</sub>Mn<sub>20</sub>Ni<sub>20</sub> (Cantor alloy), Co<sub>19</sub>Cr<sub>20</sub>Fe<sub>20</sub>Mn<sub>20</sub>Ni<sub>20</sub>С<sub>1</sub>, and Co<sub>17</sub>Cr<sub>20</sub>Fe<sub>20</sub>Mn<sub>20</sub>Ni<sub>20</sub>С<sub>3</sub> under uniaxial static tension in the temperature range from 77 to 473 K. It is shown that all the alloys acquire an fcc crystal structure after thermomechanical treatment, but the alloy with 3 at % carbon exhibits large incoherent chromium carbides unlike single-phase Co<sub>20</sub>Cr<sub>20</sub>Fe<sub>20</sub>Mn<sub>20</sub>Ni<sub>20</sub> and Co<sub>19</sub>Cr<sub>20</sub>Fe<sub>20</sub>Mn<sub>20</sub>Ni<sub>20</sub>С<sub>1</sub> alloys. Doping with carbon causes solid solution strengthening of the austenitic phase as well as dispersion hardening and moreover promotes grain refinement in the Cantor alloy. Solid solution strengthening contributes to an increase in the athermal and thermal stress components of σ<sub>0.2</sub>, leading to higher yield stress values and stronger temperature dependences σ<sub>0.2</sub>(<i>T</i>) in Co<sub>19</sub>Cr<sub>20</sub>Fe<sub>20</sub>Mn<sub>20</sub>Ni<sub>20</sub>С<sub>1</sub> and Co<sub>17</sub>Cr<sub>20</sub>Fe<sub>20</sub>Mn<sub>20</sub>Ni<sub>20</sub>С<sub>3</sub> alloys than in the Cantor alloy. The results of X-ray diffraction and microscopic analysis indicate that, despite the difference in the total concentrations of interstitial atoms in Co<sub>19</sub>Cr<sub>20</sub>Fe<sub>20</sub>Mn<sub>20</sub>Ni<sub>20</sub>С<sub>1</sub> and Co<sub>17</sub>Cr<sub>20</sub>Fe<sub>20</sub>Mn<sub>20</sub>Ni<sub>20</sub>С<sub>3</sub> alloys, the concentrations of carbon dissolved in the crystal lattice of the austenitic phase are close. However, the higher strength properties of Co<sub>17</sub>Cr<sub>20</sub>Fe<sub>20</sub>Mn<sub>20</sub>Ni<sub>20</sub>С<sub>3</sub> compared to Co<sub>19</sub>Cr<sub>20</sub>Fe<sub>20</sub>Mn<sub>20</sub>Ni<sub>20</sub>С<sub>1</sub> are determined primarily by grain boundary strengthening and, to a lesser extent, by dispersion hardening. Both factors such as lowering the deformation temperature and doping with carbon contribute to an increase in the deforming stresses of the Cantor alloy. It is shown that carbon doping affects the staged plastic flow of the Cantor alloy: the tensile curves of Co<sub>19</sub>Cr<sub>20</sub>Fe<sub>20</sub>Mn<sub>20</sub>Ni<sub>20</sub>С<sub>1</sub> carbon alloy exhibit a well-defined stage of microplastic deformation, and the flow curves of Co<sub>17</sub>Cr<sub>20</sub>Fe<sub>20</sub>Mn<sub>20</sub>Ni<sub>20</sub>С<sub>3</sub> alloy have a parabolic shape at the initial stages of plastic flow, which is typical of the deformation of alloys with large incoherent particles. The elongation to failure of Co<sub>20</sub>Cr<sub>20</sub>Fe<sub>20</sub>Mn<sub>20</sub>Ni<sub>20</sub> and Co<sub>19</sub>Cr<sub>20</sub>Fe<sub>20</sub>Mn<sub>20</sub>Ni<sub>20</sub>С<sub>1</sub> alloys increases linearly with decreasing deformation temperature, i.e. the mechanical properties of single-phase alloys are improved in the region of low test temperatures. For Co<sub>17</sub>Cr<sub>20</sub>Fe<sub>20</sub>Mn<sub>20</sub>Ni<sub>20</sub>С<sub>3</sub> alloy, an increase in strength properties during low-temperature deformation is accompanied by a decrease in elongation, and the alloy becomes brittle from the macromechanical viewpoint.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 2","pages":"113 - 123"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924020012","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses the temperature dependence of the mechanical properties of multicomponent alloys Co20Cr20Fe20Mn20Ni20 (Cantor alloy), Co19Cr20Fe20Mn20Ni20С1, and Co17Cr20Fe20Mn20Ni20С3 under uniaxial static tension in the temperature range from 77 to 473 K. It is shown that all the alloys acquire an fcc crystal structure after thermomechanical treatment, but the alloy with 3 at % carbon exhibits large incoherent chromium carbides unlike single-phase Co20Cr20Fe20Mn20Ni20 and Co19Cr20Fe20Mn20Ni20С1 alloys. Doping with carbon causes solid solution strengthening of the austenitic phase as well as dispersion hardening and moreover promotes grain refinement in the Cantor alloy. Solid solution strengthening contributes to an increase in the athermal and thermal stress components of σ0.2, leading to higher yield stress values and stronger temperature dependences σ0.2(T) in Co19Cr20Fe20Mn20Ni20С1 and Co17Cr20Fe20Mn20Ni20С3 alloys than in the Cantor alloy. The results of X-ray diffraction and microscopic analysis indicate that, despite the difference in the total concentrations of interstitial atoms in Co19Cr20Fe20Mn20Ni20С1 and Co17Cr20Fe20Mn20Ni20С3 alloys, the concentrations of carbon dissolved in the crystal lattice of the austenitic phase are close. However, the higher strength properties of Co17Cr20Fe20Mn20Ni20С3 compared to Co19Cr20Fe20Mn20Ni20С1 are determined primarily by grain boundary strengthening and, to a lesser extent, by dispersion hardening. Both factors such as lowering the deformation temperature and doping with carbon contribute to an increase in the deforming stresses of the Cantor alloy. It is shown that carbon doping affects the staged plastic flow of the Cantor alloy: the tensile curves of Co19Cr20Fe20Mn20Ni20С1 carbon alloy exhibit a well-defined stage of microplastic deformation, and the flow curves of Co17Cr20Fe20Mn20Ni20С3 alloy have a parabolic shape at the initial stages of plastic flow, which is typical of the deformation of alloys with large incoherent particles. The elongation to failure of Co20Cr20Fe20Mn20Ni20 and Co19Cr20Fe20Mn20Ni20С1 alloys increases linearly with decreasing deformation temperature, i.e. the mechanical properties of single-phase alloys are improved in the region of low test temperatures. For Co17Cr20Fe20Mn20Ni20С3 alloy, an increase in strength properties during low-temperature deformation is accompanied by a decrease in elongation, and the alloy becomes brittle from the macromechanical viewpoint.

Abstract Image

Abstract Image

高熵合金 Co20Cr20Fe20Mn20Ni20、Co19Cr20Fe20Mn20Ni20С1 和 Co17Cr20Fe20Mn20Ni20С3变形行为的温度依赖性。机械性能和屈服应力的温度依赖性
摘要 本文讨论了多组分合金Co20Cr20Fe20Mn20Ni20(Cantor合金)、Co19Cr20Fe20Mn20Ni20С1和Co17Cr20Fe20Mn20Ni20С3在77-473 K温度范围内受到单轴静态拉伸时力学性能的温度依赖性。结果表明,所有合金在热机械处理后都获得了 fcc 晶体结构,但与单相 Co20Cr20Fe20Mn20Ni20 和 Co19Cr20Fe20Mn20Ni20С1 合金不同的是,碳含量为 3% 的合金表现出大量不连贯的铬碳化物。掺碳会导致奥氏体相的固溶强化和弥散硬化,并促进 Cantor 合金的晶粒细化。与 Cantor 合金相比,固溶强化导致 σ0.2 的热应力和热应力分量增加,使 Co19Cr20Fe20Mn20Ni20С1 和 Co17Cr20Fe20Mn20Ni20С3 合金的屈服应力值更高,温度相关性 σ0.2(T) 更强。X 射线衍射和显微分析结果表明,尽管 Co19Cr20Fe20Mn20Ni20С1 和 Co17Cr20Fe20Mn20Ni20С3 合金中间隙原子的总浓度不同,但溶解在奥氏体相晶格中的碳浓度接近。然而,与 Co19Cr20Fe20Mn20Ni20С1 相比,Co17Cr20Fe20Mn20Ni20С3 具有更高的强度特性,这主要是由晶界强化决定的,其次是由弥散硬化决定的。降低变形温度和掺入碳这两个因素都会增加 Cantor 合金的变形应力。研究表明,碳掺杂会影响 Cantor 合金的阶段性塑性流动:Co19Cr20Fe20Mn20Ni20С1 碳合金的拉伸曲线表现出明确的微塑性变形阶段,而 Co17Cr20Fe20Mn20Ni20С3 合金的流动曲线在塑性流动的初始阶段呈抛物线形状,这是具有大的不连贯颗粒的合金变形的典型特征。Co20Cr20Fe20Mn20Ni20 和 Co19Cr20Fe20Mn20Ni20С1 合金的破坏伸长率随变形温度的降低而线性增加,即单相合金的机械性能在低试验温度区域得到改善。对于 Co17Cr20Fe20Mn20Ni20С3 合金来说,低温变形过程中强度性能的提高伴随着伸长率的降低,从宏观机械角度来看,合金变得很脆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信