{"title":"Coordinated distributed experiments in ecology do not consistently reduce heterogeneity in effect size","authors":"Julia Bebout, Jeremy W. Fox","doi":"10.1111/oik.10722","DOIUrl":null,"url":null,"abstract":"Ecological meta‐analyses usually exhibit high relative heterogeneity of effect size: most among‐study variation in effect size represents true variation in mean effect size, rather than sampling error. This heterogeneity arises from both methodological and ecological sources. Methodological heterogeneity is a nuisance that complicates the interpretation of data syntheses. One way to reduce methodological heterogeneity is via coordinated distributed experiments, in which investigators conduct the same experiment at different sites, using the same methods. We tested whether coordinated distributed experiments in ecology exhibit 1) low heterogeneity in effect size, and 2) lower heterogeneity than meta‐analyses, using data on 17 effects from eight coordinated distributed experiments, and 406 meta‐analyses. Consistent with our expectations, among‐site heterogeneity typically comprised <50% of the variance in effect size in distributed experiments. In contrast, heterogeneity within and among studies typically comprised >90% of the variance in effect size in meta‐analyses. However, this difference largely reflected the small size of most coordinated distributed experiments, and was no longer significant after controlling for size (number of studies or sites). These results are consistent with the hypothesis that methodological heterogeneity rarely comprises a substantial fraction of variance in effect size in ecology. We also conducted pairwise comparisons of absolute heterogeneity between coordinated distributed experiments and meta‐analyses on the same topics. Coordinated distributed experiments did not consistently exhibit lower absolute heterogeneity in effect size than meta‐analyses on the same topics. Our findings suggest that coordinated distributed experiments rarely increase uniformity of results by reducing methodological heterogeneity. Our results help refine the numerous distinct reasons for conducting coordinated distributed experiments.","PeriodicalId":19496,"journal":{"name":"Oikos","volume":"8 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oikos","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/oik.10722","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ecological meta‐analyses usually exhibit high relative heterogeneity of effect size: most among‐study variation in effect size represents true variation in mean effect size, rather than sampling error. This heterogeneity arises from both methodological and ecological sources. Methodological heterogeneity is a nuisance that complicates the interpretation of data syntheses. One way to reduce methodological heterogeneity is via coordinated distributed experiments, in which investigators conduct the same experiment at different sites, using the same methods. We tested whether coordinated distributed experiments in ecology exhibit 1) low heterogeneity in effect size, and 2) lower heterogeneity than meta‐analyses, using data on 17 effects from eight coordinated distributed experiments, and 406 meta‐analyses. Consistent with our expectations, among‐site heterogeneity typically comprised <50% of the variance in effect size in distributed experiments. In contrast, heterogeneity within and among studies typically comprised >90% of the variance in effect size in meta‐analyses. However, this difference largely reflected the small size of most coordinated distributed experiments, and was no longer significant after controlling for size (number of studies or sites). These results are consistent with the hypothesis that methodological heterogeneity rarely comprises a substantial fraction of variance in effect size in ecology. We also conducted pairwise comparisons of absolute heterogeneity between coordinated distributed experiments and meta‐analyses on the same topics. Coordinated distributed experiments did not consistently exhibit lower absolute heterogeneity in effect size than meta‐analyses on the same topics. Our findings suggest that coordinated distributed experiments rarely increase uniformity of results by reducing methodological heterogeneity. Our results help refine the numerous distinct reasons for conducting coordinated distributed experiments.
期刊介绍:
Oikos publishes original and innovative research on all aspects of ecology, defined as organism-environment interactions at various spatiotemporal scales, so including macroecology and evolutionary ecology. Emphasis is on theoretical and empirical work aimed at generalization and synthesis across taxa, systems and ecological disciplines. Papers can contribute to new developments in ecology by reporting novel theory or critical empirical results, and "synthesis" can include developing new theory, tests of general hypotheses, or bringing together established or emerging areas of ecology. Confirming or extending the established literature, by for example showing results that are novel for a new taxon, or purely applied research, is given low priority.