{"title":"Numerical analyses of M31 dark matter profiles","authors":"Kuantay Boshkayev, Talgar Konysbayev, Yergali Kurmanov, Orlando Luongo, Marco Muccino, Hernando Quevedo, Gulnur Zhumakhanova","doi":"10.1142/s0218271824500160","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we reproduce the rotation curve of the Andromeda galaxy (M31) by taking into account its bulge, disk and halo components, considering the last one to contain the major part of dark matter mass. Hence, our prescription is to split the galactic bulge into two components, namely, the inner and main bulges, respectively. Both bulges are thus modeled by exponential density profiles since we underline that the widely accepted de Vaucouleurs law fails to reproduce the whole galactic bulge rotation curve. In addition, we adopt various well-known phenomenological dark matter profiles to estimate the dark matter mass in the halo region. Moreover, we apply the least-squares fitting method to determine from the rotation curve the model free parameters, namely, the characteristic (central) density, scale radius and consequently the total mass. To do so, we perform Markov chain Monte Carlo statistical analyses based on the Metropolis algorithm, maximizing our likelihoods adopting velocity and radii data points of the rotation curves. We do not fit separately the components for bulges, disk and halo, but we perform an overall fit including all the components and employing all the data points. Thus, we critically analyze our corresponding findings and, in particular, we employ the Bayesian information criterion to assess the most accredited model to describe M31 dark matter dynamics.</p>","PeriodicalId":50307,"journal":{"name":"International Journal of Modern Physics D","volume":"4 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0218271824500160","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we reproduce the rotation curve of the Andromeda galaxy (M31) by taking into account its bulge, disk and halo components, considering the last one to contain the major part of dark matter mass. Hence, our prescription is to split the galactic bulge into two components, namely, the inner and main bulges, respectively. Both bulges are thus modeled by exponential density profiles since we underline that the widely accepted de Vaucouleurs law fails to reproduce the whole galactic bulge rotation curve. In addition, we adopt various well-known phenomenological dark matter profiles to estimate the dark matter mass in the halo region. Moreover, we apply the least-squares fitting method to determine from the rotation curve the model free parameters, namely, the characteristic (central) density, scale radius and consequently the total mass. To do so, we perform Markov chain Monte Carlo statistical analyses based on the Metropolis algorithm, maximizing our likelihoods adopting velocity and radii data points of the rotation curves. We do not fit separately the components for bulges, disk and halo, but we perform an overall fit including all the components and employing all the data points. Thus, we critically analyze our corresponding findings and, in particular, we employ the Bayesian information criterion to assess the most accredited model to describe M31 dark matter dynamics.
期刊介绍:
Gravitation, astrophysics and cosmology are exciting and rapidly advancing fields of research. This journal aims to accommodate and promote this expansion of information and ideas and it features research papers and reviews on theoretical, observational and experimental findings in these fields. Among the topics covered are general relativity, quantum gravity, gravitational experiments, quantum cosmology, observational cosmology, particle cosmology, large scale structure, high energy astrophysics, compact objects, cosmic particles and radiation.