Rotating regular black holes and other compact objects with a Tolman-type potential as a regular interior for the Kerr metric

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Angel D. D. Masa, Vilson T. Zanchin
{"title":"Rotating regular black holes and other compact objects with a Tolman-type potential as a regular interior for the Kerr metric","authors":"Angel D. D. Masa, Vilson T. Zanchin","doi":"10.1142/s021827182350102x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we obtain a new class of stationary axisymmetric spacetimes by using the Gürses–Gürsey metric with an appropriate mass function in order to generate a rotating core of matter that may be smoothly matched to the exterior Kerr metric. The same stationary spacetimes may be obtained by applying a slightly modified version of the Newman–Janis algorithm to a nonrotating spherically symmetric seed metric. The starting spherically symmetric configuration represents a nonisotropic de Sitter-type fluid whose radial pressure <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span><span></span> satisfies an state equation of the form <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><mo>−</mo><mi>ρ</mi></math></span><span></span>, where the energy density <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>ρ</mi></math></span><span></span> is chosen to be the Tolman-type-VII energy density [R. C. Tolman, <i>Phys. Rev.</i><b>55</b>, 364 (1939)]. The resulting rotating metric is then smoothly matched to the exterior Kerr metric, and the main properties of the obtained geometries are investigated. All the solutions considered in this study are regular in the sense they are free of curvature singularities. Depending on the relative values of the total mass <i>m</i> and rotation parameter <i>a</i>, the resulting stationary spacetimes represent different kinds of rotating compact objects such as regular black holes, extremal regular black holes, and regular starlike configurations.</p>","PeriodicalId":50307,"journal":{"name":"International Journal of Modern Physics D","volume":"82 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s021827182350102x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we obtain a new class of stationary axisymmetric spacetimes by using the Gürses–Gürsey metric with an appropriate mass function in order to generate a rotating core of matter that may be smoothly matched to the exterior Kerr metric. The same stationary spacetimes may be obtained by applying a slightly modified version of the Newman–Janis algorithm to a nonrotating spherically symmetric seed metric. The starting spherically symmetric configuration represents a nonisotropic de Sitter-type fluid whose radial pressure pr satisfies an state equation of the form pr=ρ, where the energy density ρ is chosen to be the Tolman-type-VII energy density [R. C. Tolman, Phys. Rev.55, 364 (1939)]. The resulting rotating metric is then smoothly matched to the exterior Kerr metric, and the main properties of the obtained geometries are investigated. All the solutions considered in this study are regular in the sense they are free of curvature singularities. Depending on the relative values of the total mass m and rotation parameter a, the resulting stationary spacetimes represent different kinds of rotating compact objects such as regular black holes, extremal regular black holes, and regular starlike configurations.

旋转规则黑洞和其他具有托尔曼型势能的紧凑天体作为克尔公度量的规则内部
在本文中,我们利用具有适当质量函数的 Gürses-Gürsey 度量,生成了一类新的静止轴对称时空,其旋转物质核心可与外部克尔度量平滑匹配。对非旋转球面对称种子度量应用稍加修改的纽曼-简尼斯算法,也可以得到相同的静止时空。起始球对称构型代表一种非各向同性的德西特流体,其径向压力 pr 满足形式为 pr=-ρ 的状态方程,其中能量密度 ρ 被选作托尔曼型-VII 能量密度[R. C. Tolman, Phys. Rev.55, 364 (1939)]。然后将得到的旋转度量与外部克尔度量进行平滑匹配,并研究得到的几何图形的主要性质。本研究中考虑的所有解都是正则解,即不存在曲率奇异性。根据总质量 m 和旋转参数 a 的相对值,得到的静止时空代表了不同类型的旋转紧凑天体,如规则黑洞、极端规则黑洞和规则星状构型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Modern Physics D
International Journal of Modern Physics D 地学天文-天文与天体物理
CiteScore
3.80
自引率
9.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Gravitation, astrophysics and cosmology are exciting and rapidly advancing fields of research. This journal aims to accommodate and promote this expansion of information and ideas and it features research papers and reviews on theoretical, observational and experimental findings in these fields. Among the topics covered are general relativity, quantum gravity, gravitational experiments, quantum cosmology, observational cosmology, particle cosmology, large scale structure, high energy astrophysics, compact objects, cosmic particles and radiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信