Reversed particle filtering for hidden markov models

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Frank Rotiroti, Stephen G. Walker
{"title":"Reversed particle filtering for hidden markov models","authors":"Frank Rotiroti, Stephen G. Walker","doi":"10.1007/s11222-024-10426-4","DOIUrl":null,"url":null,"abstract":"<p>We present an approach to selecting the distributions in sampling-resampling which improves the efficiency of the weighted bootstrap. To complement the standard scheme of sampling from the prior and reweighting with the likelihood, we introduce a reversed scheme, which samples from the (normalized) likelihood and reweights with the prior. We begin with some motivating examples, before developing the relevant theory. We then apply the approach to the particle filtering of time series, including nonlinear and non-Gaussian Bayesian state-space models, a task that demands efficiency, given the repeated application of the weighted bootstrap. Through simulation studies on a normal dynamic linear model, Poisson hidden Markov model, and stochastic volatility model, we demonstrate the gains in efficiency obtained by the approach, involving the choice of the standard or reversed filter. In addition, for the stochastic volatility model, we provide three real-data examples, including a comparison with importance sampling methods that attempt to incorporate information about the data indirectly into the standard filtering scheme and an extension to multivariate models. We determine that the reversed filtering scheme offers an advantage over such auxiliary methods owing to its ability to incorporate information about the data directly into the sampling, an ability that further facilitates its performance in higher-dimensional settings.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":"2015 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10426-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We present an approach to selecting the distributions in sampling-resampling which improves the efficiency of the weighted bootstrap. To complement the standard scheme of sampling from the prior and reweighting with the likelihood, we introduce a reversed scheme, which samples from the (normalized) likelihood and reweights with the prior. We begin with some motivating examples, before developing the relevant theory. We then apply the approach to the particle filtering of time series, including nonlinear and non-Gaussian Bayesian state-space models, a task that demands efficiency, given the repeated application of the weighted bootstrap. Through simulation studies on a normal dynamic linear model, Poisson hidden Markov model, and stochastic volatility model, we demonstrate the gains in efficiency obtained by the approach, involving the choice of the standard or reversed filter. In addition, for the stochastic volatility model, we provide three real-data examples, including a comparison with importance sampling methods that attempt to incorporate information about the data indirectly into the standard filtering scheme and an extension to multivariate models. We determine that the reversed filtering scheme offers an advantage over such auxiliary methods owing to its ability to incorporate information about the data directly into the sampling, an ability that further facilitates its performance in higher-dimensional settings.

Abstract Image

隐马尔可夫模型的反向粒子滤波
我们提出了一种在采样-再采样中选择分布的方法,它提高了加权自举法的效率。为了补充从先验值取样并用似然值重新加权的标准方案,我们引入了一种相反的方案,即从(归一化)似然值取样并用先验值重新加权。在发展相关理论之前,我们先举一些激励性的例子。然后,我们将该方法应用于时间序列的粒子滤波,包括非线性和非高斯贝叶斯状态空间模型,由于加权自举法的重复应用,这项任务对效率要求很高。通过对正态动态线性模型、泊松隐马尔可夫模型和随机波动模型的模拟研究,我们证明了该方法在效率方面的收益,其中涉及标准或反向滤波器的选择。此外,对于随机波动模型,我们提供了三个实际数据示例,包括与试图将数据信息间接纳入标准过滤方案的重要性抽样方法的比较,以及对多元模型的扩展。我们认为,反向滤波方案由于能够将数据信息直接纳入采样,因此比此类辅助方法更具优势,这种能力进一步促进了反向滤波方案在高维环境中的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信