{"title":"Reversed particle filtering for hidden markov models","authors":"Frank Rotiroti, Stephen G. Walker","doi":"10.1007/s11222-024-10426-4","DOIUrl":null,"url":null,"abstract":"<p>We present an approach to selecting the distributions in sampling-resampling which improves the efficiency of the weighted bootstrap. To complement the standard scheme of sampling from the prior and reweighting with the likelihood, we introduce a reversed scheme, which samples from the (normalized) likelihood and reweights with the prior. We begin with some motivating examples, before developing the relevant theory. We then apply the approach to the particle filtering of time series, including nonlinear and non-Gaussian Bayesian state-space models, a task that demands efficiency, given the repeated application of the weighted bootstrap. Through simulation studies on a normal dynamic linear model, Poisson hidden Markov model, and stochastic volatility model, we demonstrate the gains in efficiency obtained by the approach, involving the choice of the standard or reversed filter. In addition, for the stochastic volatility model, we provide three real-data examples, including a comparison with importance sampling methods that attempt to incorporate information about the data indirectly into the standard filtering scheme and an extension to multivariate models. We determine that the reversed filtering scheme offers an advantage over such auxiliary methods owing to its ability to incorporate information about the data directly into the sampling, an ability that further facilitates its performance in higher-dimensional settings.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10426-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We present an approach to selecting the distributions in sampling-resampling which improves the efficiency of the weighted bootstrap. To complement the standard scheme of sampling from the prior and reweighting with the likelihood, we introduce a reversed scheme, which samples from the (normalized) likelihood and reweights with the prior. We begin with some motivating examples, before developing the relevant theory. We then apply the approach to the particle filtering of time series, including nonlinear and non-Gaussian Bayesian state-space models, a task that demands efficiency, given the repeated application of the weighted bootstrap. Through simulation studies on a normal dynamic linear model, Poisson hidden Markov model, and stochastic volatility model, we demonstrate the gains in efficiency obtained by the approach, involving the choice of the standard or reversed filter. In addition, for the stochastic volatility model, we provide three real-data examples, including a comparison with importance sampling methods that attempt to incorporate information about the data indirectly into the standard filtering scheme and an extension to multivariate models. We determine that the reversed filtering scheme offers an advantage over such auxiliary methods owing to its ability to incorporate information about the data directly into the sampling, an ability that further facilitates its performance in higher-dimensional settings.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.