Convergence properties of new $$\alpha $$ -Bernstein–Kantorovich type operators

Ajay Kumar, Abhishek Senapati, Tanmoy Som
{"title":"Convergence properties of new $$\\alpha $$ -Bernstein–Kantorovich type operators","authors":"Ajay Kumar, Abhishek Senapati, Tanmoy Som","doi":"10.1007/s13226-024-00577-5","DOIUrl":null,"url":null,"abstract":"<p>In the present paper, we introduce a new sequence of <span>\\(\\alpha -\\)</span>Bernstein-Kantorovich type operators, which fix constant and preserve Korovkin’s other test functions in a limiting sense. We extend the natural Korovkin and Voronovskaja type results into a sequence of probability measure spaces. Then, we establish the convergence properties of these operators using the Ditzian-Totik modulus of smoothness for Lipschitz-type space and functions with derivatives of bounded variations.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00577-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we introduce a new sequence of \(\alpha -\)Bernstein-Kantorovich type operators, which fix constant and preserve Korovkin’s other test functions in a limiting sense. We extend the natural Korovkin and Voronovskaja type results into a sequence of probability measure spaces. Then, we establish the convergence properties of these operators using the Ditzian-Totik modulus of smoothness for Lipschitz-type space and functions with derivatives of bounded variations.

新$\$alpha$-伯恩斯坦-康托洛维奇型算子的收敛特性
在本文中,我们引入了一个新的(\α -\)伯恩斯坦-康托洛维奇型算子序列,它在限定意义上固定常数并保留了科洛夫金的其他检验函数。我们将自然的科洛夫金和沃罗诺夫斯卡娅类型结果推广到概率测度空间序列中。然后,我们利用 Lipschitz 型空间和具有有界变化导数的函数的 Ditzian-Totik 平滑度模量,建立了这些算子的收敛特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信