Higher order numerical methods for fractional delay differential equations

Manoj Kumar, Aman Jhinga, Varsha Daftardar-Gejji
{"title":"Higher order numerical methods for fractional delay differential equations","authors":"Manoj Kumar, Aman Jhinga, Varsha Daftardar-Gejji","doi":"10.1007/s13226-024-00579-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a new family of higher-order numerical methods for solving non-linear fractional delay differential equations (FDDEs) along with the error analysis. Further, we solve various non-trivial systems of FDDEs to illustrate their applicability and utility. By using the proposed numerical methods, computational time is reduced drastically. These methods take only 5 to 10 percent of the time required for other methods such as the fractional Adams method (FAM). Furthermore, these methods converge for very small values of fractional derivative while FAM and the new predictor-corrector method (NPCM) introduced by Daftardar-Gejji <i>et al.</i> [1] do not converge. The order of convergence of the proposed methods is <span>\\(r+\\alpha \\)</span>, where <i>r</i> is the order of fractional backward difference formulae and <span>\\(\\alpha \\)</span> denotes the order of the fractional derivative. Thus these methods have a higher order of accuracy than FAM or NPCM.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00579-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a new family of higher-order numerical methods for solving non-linear fractional delay differential equations (FDDEs) along with the error analysis. Further, we solve various non-trivial systems of FDDEs to illustrate their applicability and utility. By using the proposed numerical methods, computational time is reduced drastically. These methods take only 5 to 10 percent of the time required for other methods such as the fractional Adams method (FAM). Furthermore, these methods converge for very small values of fractional derivative while FAM and the new predictor-corrector method (NPCM) introduced by Daftardar-Gejji et al. [1] do not converge. The order of convergence of the proposed methods is \(r+\alpha \), where r is the order of fractional backward difference formulae and \(\alpha \) denotes the order of the fractional derivative. Thus these methods have a higher order of accuracy than FAM or NPCM.

分数延迟微分方程的高阶数值方法
在本文中,我们提出了一系列新的高阶数值方法,用于求解非线性分数延迟微分方程(FDDE)并进行误差分析。此外,我们还求解了各种非三维分数延迟微分方程系统,以说明其适用性和实用性。通过使用所提出的数值方法,计算时间大大缩短。这些方法所需的时间仅为分数亚当斯法(FAM)等其他方法的 5%至 10%。此外,这些方法在分数导数值非常小的情况下也能收敛,而 FAM 和 Daftardar-Gejji 等人[1] 提出的新预测器-校正器方法 (NPCM) 却不能收敛。所提方法的收敛阶数是(r+\α \),其中 r 是分数后向差分公式的阶数,\(\α \)表示分数导数的阶数。因此,这些方法比 FAM 或 NPCM 具有更高阶的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信