{"title":"$\\mathbf{C^{2}}$ -Lusin approximation of strongly convex functions","authors":"Daniel Azagra, Marjorie Drake, Piotr Hajłasz","doi":"10.1007/s00222-024-01252-6","DOIUrl":null,"url":null,"abstract":"<p>We prove that if <span>\\(u:\\mathbb{R}^{n}\\to \\mathbb{R}\\)</span> is strongly convex, then for every <span>\\(\\varepsilon >0\\)</span> there is a strongly convex function <span>\\(v\\in C^{2}(\\mathbb{R}^{n})\\)</span> such that <span>\\(|\\{u\\neq v\\}|<\\varepsilon \\)</span> and <span>\\(\\Vert u-v\\Vert _{\\infty}<\\varepsilon \\)</span>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01252-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that if \(u:\mathbb{R}^{n}\to \mathbb{R}\) is strongly convex, then for every \(\varepsilon >0\) there is a strongly convex function \(v\in C^{2}(\mathbb{R}^{n})\) such that \(|\{u\neq v\}|<\varepsilon \) and \(\Vert u-v\Vert _{\infty}<\varepsilon \).