Persistence of heterodimensional cycles

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Dongchen Li, Dmitry Turaev
{"title":"Persistence of heterodimensional cycles","authors":"Dongchen Li, Dmitry Turaev","doi":"10.1007/s00222-024-01255-3","DOIUrl":null,"url":null,"abstract":"<p>A heterodimensional cycle is an invariant set of a dynamical system consisting of two hyperbolic periodic orbits with different dimensions of their unstable manifolds and a pair of orbits that connect them. For systems which are at least <span>\\(C^{2}\\)</span>, we show that bifurcations of a coindex-1 heterodimensional cycle within a generic 2-parameter family create robust heterodimensional dynamics, i.e., a pair of non-trivial hyperbolic basic sets with different numbers of positive Lyapunov exponents, such that the unstable manifold of each of the sets intersects the stable manifold of the second set and these intersections persist for an open set of parameter values. We also give a solution to the so-called local stabilization problem of coindex-1 heterodimensional cycles in any regularity class <span>\\(r=2,\\ldots ,\\infty ,\\omega \\)</span>. The results are based on the observation that arithmetic properties of moduli of topological conjugacy of systems with heterodimensional cycles determine the emergence of Bonatti-Díaz blenders.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01255-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

A heterodimensional cycle is an invariant set of a dynamical system consisting of two hyperbolic periodic orbits with different dimensions of their unstable manifolds and a pair of orbits that connect them. For systems which are at least \(C^{2}\), we show that bifurcations of a coindex-1 heterodimensional cycle within a generic 2-parameter family create robust heterodimensional dynamics, i.e., a pair of non-trivial hyperbolic basic sets with different numbers of positive Lyapunov exponents, such that the unstable manifold of each of the sets intersects the stable manifold of the second set and these intersections persist for an open set of parameter values. We also give a solution to the so-called local stabilization problem of coindex-1 heterodimensional cycles in any regularity class \(r=2,\ldots ,\infty ,\omega \). The results are based on the observation that arithmetic properties of moduli of topological conjugacy of systems with heterodimensional cycles determine the emergence of Bonatti-Díaz blenders.

Abstract Image

异维周期的持续性
异维循环是一个动力系统的不变集,由两个不稳定流形维度不同的双曲周期轨道和连接它们的一对轨道组成。对于至少是\(C^{2}\)的系统,我们证明了在一般的2参数族中,共指数-1异维循环的分岔会产生稳健的异维动力学,即具有不同正李雅普诺夫指数的一对非三维双曲基本集,使得每个集的不稳定流形与第二个集的稳定流形相交,并且这些相交在一个开放的参数值集上持续存在。我们还给出了在任意正则类 \(r=2,\ldots ,\infty ,\omega \) 中 coindex-1 异维循环的所谓局部稳定问题的解。这些结果基于这样一个观察:具有异维循环的系统的拓扑共轭模的算术性质决定了博纳蒂-迪亚斯混合器的出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信