KFP operators with coefficients measurable in time and Dini continuous in space

IF 1.1 3区 数学 Q1 MATHEMATICS
{"title":"KFP operators with coefficients measurable in time and Dini continuous in space","authors":"","doi":"10.1007/s00028-024-00964-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We consider degenerate Kolmogorov–Fokker–Planck operators <span> <span>$$\\begin{aligned} \\mathcal {L}u&amp;=\\sum _{i,j=1}^{m_{0}}a_{ij}(x,t)\\partial _{x_{i}x_{j}} ^{2}u+\\sum _{k,j=1}^{N}b_{jk}x_{k}\\partial _{x_{j}}u-\\partial _{t}u\\\\&amp;\\equiv \\sum _{i,j=1}^{m_{0}}a_{ij}(x,t)\\partial _{x_{i}x_{j}}^{2}u+Yu \\end{aligned}$$</span> </span>(with <span> <span>\\((x,t)\\in \\mathbb {R}^{N+1}\\)</span> </span> and <span> <span>\\(1\\le m_{0}\\le N\\)</span> </span>) such that the corresponding model operator having constant <span> <span>\\(a_{ij}\\)</span> </span> is hypoelliptic, translation invariant w.r.t. a Lie group operation in <span> <span>\\(\\mathbb {R} ^{N+1}\\)</span> </span> and 2-homogeneous w.r.t. a family of nonisotropic dilations. The matrix <span> <span>\\((a_{ij})_{i,j=1}^{m_{0}}\\)</span> </span> is symmetric and uniformly positive on <span> <span>\\(\\mathbb {R}^{m_{0}}\\)</span> </span>. The coefficients <span> <span>\\(a_{ij}\\)</span> </span> are bounded and <em>Dini continuous in space</em>, and only bounded measurable in time. This means that, setting <span> <span>$$\\begin{aligned} \\mathrm {(i)}&amp;\\,\\,S_{T}=\\mathbb {R}^{N}\\times \\left( -\\infty ,T\\right) ,\\\\ \\mathrm {(ii)}&amp;\\,\\,\\omega _{f,S_{T}}(r) = \\sup _{\\begin{array}{c} (x,t),(y,t)\\in S_{T}\\\\ \\Vert x-y\\Vert \\le r \\end{array}}\\vert f(x,t) -f(y,t)\\vert \\\\ \\mathrm {(iii)}&amp;\\,\\,\\Vert f\\Vert _{\\mathcal {D}( S_{T}) } =\\int _{0}^{1} \\frac{\\omega _{f,S_{T}}(r) }{r}dr+\\Vert f\\Vert _{L^{\\infty }\\left( S_{T}\\right) } \\end{aligned}$$</span> </span>we require the finiteness of <span> <span>\\(\\Vert a_{ij}\\Vert _{\\mathcal {D}(S_{T})}\\)</span> </span>. We bound <span> <span>\\(\\omega _{u_{x_{i}x_{j}},S_{T}}\\)</span> </span>, <span> <span>\\(\\Vert u_{x_{i}x_{j}}\\Vert _{L^{\\infty }( S_{T}) }\\)</span> </span> (<span> <span>\\(i,j=1,2,...,m_{0}\\)</span> </span>), <span> <span>\\(\\omega _{Yu,S_{T}}\\)</span> </span>, <span> <span>\\(\\Vert Yu\\Vert _{L^{\\infty }( S_{T}) }\\)</span> </span> in terms of <span> <span>\\(\\omega _{\\mathcal {L}u,S_{T}}\\)</span> </span>, <span> <span>\\(\\Vert \\mathcal {L}u\\Vert _{L^{\\infty }( S_{T}) }\\)</span> </span> and <span> <span>\\(\\Vert u\\Vert _{L^{\\infty }\\left( S_{T}\\right) }\\)</span> </span>, getting a control on the uniform continuity in space of <span> <span>\\(u_{x_{i}x_{j}},Yu\\)</span> </span> if <span> <span>\\(\\mathcal {L}u\\)</span> </span> is bounded and Dini-continuous in space. Under the additional assumption that both the coefficients <span> <span>\\(a_{ij}\\)</span> </span> and <span> <span>\\(\\mathcal {L}u\\)</span> </span> are log-Dini continuous, meaning the finiteness of the quantity <span> <span>$$\\begin{aligned} \\int _{0}^{1}\\frac{\\omega _{f,S_{T}}\\left( r\\right) }{r}\\left| \\log r\\right| dr, \\end{aligned}$$</span> </span>we prove that <span> <span>\\(u_{x_{i}x_{j}}\\)</span> </span> and <em>Yu</em> are Dini continuous; moreover, in this case, the derivatives <span> <span>\\(u_{x_{i}x_{j}}\\)</span> </span> are locally uniformly continuous in space <em>and time</em>. </p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00964-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider degenerate Kolmogorov–Fokker–Planck operators $$\begin{aligned} \mathcal {L}u&=\sum _{i,j=1}^{m_{0}}a_{ij}(x,t)\partial _{x_{i}x_{j}} ^{2}u+\sum _{k,j=1}^{N}b_{jk}x_{k}\partial _{x_{j}}u-\partial _{t}u\\&\equiv \sum _{i,j=1}^{m_{0}}a_{ij}(x,t)\partial _{x_{i}x_{j}}^{2}u+Yu \end{aligned}$$ (with \((x,t)\in \mathbb {R}^{N+1}\) and \(1\le m_{0}\le N\) ) such that the corresponding model operator having constant \(a_{ij}\) is hypoelliptic, translation invariant w.r.t. a Lie group operation in \(\mathbb {R} ^{N+1}\) and 2-homogeneous w.r.t. a family of nonisotropic dilations. The matrix \((a_{ij})_{i,j=1}^{m_{0}}\) is symmetric and uniformly positive on \(\mathbb {R}^{m_{0}}\) . The coefficients \(a_{ij}\) are bounded and Dini continuous in space, and only bounded measurable in time. This means that, setting $$\begin{aligned} \mathrm {(i)}&\,\,S_{T}=\mathbb {R}^{N}\times \left( -\infty ,T\right) ,\\ \mathrm {(ii)}&\,\,\omega _{f,S_{T}}(r) = \sup _{\begin{array}{c} (x,t),(y,t)\in S_{T}\\ \Vert x-y\Vert \le r \end{array}}\vert f(x,t) -f(y,t)\vert \\ \mathrm {(iii)}&\,\,\Vert f\Vert _{\mathcal {D}( S_{T}) } =\int _{0}^{1} \frac{\omega _{f,S_{T}}(r) }{r}dr+\Vert f\Vert _{L^{\infty }\left( S_{T}\right) } \end{aligned}$$ we require the finiteness of \(\Vert a_{ij}\Vert _{\mathcal {D}(S_{T})}\) . We bound \(\omega _{u_{x_{i}x_{j}},S_{T}}\) , \(\Vert u_{x_{i}x_{j}}\Vert _{L^{\infty }( S_{T}) }\) ( \(i,j=1,2,...,m_{0}\) ), \(\omega _{Yu,S_{T}}\) , \(\Vert Yu\Vert _{L^{\infty }( S_{T}) }\) in terms of \(\omega _{\mathcal {L}u,S_{T}}\) , \(\Vert \mathcal {L}u\Vert _{L^{\infty }( S_{T}) }\) and \(\Vert u\Vert _{L^{\infty }\left( S_{T}\right) }\) , getting a control on the uniform continuity in space of \(u_{x_{i}x_{j}},Yu\) if \(\mathcal {L}u\) is bounded and Dini-continuous in space. Under the additional assumption that both the coefficients \(a_{ij}\) and \(\mathcal {L}u\) are log-Dini continuous, meaning the finiteness of the quantity $$\begin{aligned} \int _{0}^{1}\frac{\omega _{f,S_{T}}\left( r\right) }{r}\left| \log r\right| dr, \end{aligned}$$ we prove that \(u_{x_{i}x_{j}}\) and Yu are Dini continuous; moreover, in this case, the derivatives \(u_{x_{i}x_{j}}\) are locally uniformly continuous in space and time.

系数在时间上可测、在空间上迪尼连续的 KFP 算子
Abstract We consider degenerate Kolmogorov-Fokker-Planck operators $$\begin{aligned} (我们考虑退化的 Kolmogorov-Fokker-Planck 算子)。\mathcal {L}u&=/sum _{i,j=1}^{m_{0}}a_{ij}(x,t)\partial _{x_{i}x_{j}}^{2}u+sum _{k,j=1}^{N}b_{jk}x_{k} (部分) _{x_{j}}u- (部分) _{t}u\&;\equiv _{i,j=1}^{m_{0}}a_{ij}(x,t)\partial _{x_{i}x_{j}}^{2}u+Yu \end{aligned}$$ (其中 ((x、t)in \mathbb {R}^{N+1}\) and\(1\le m_{0}\le N\) ),这样具有常数 \(a_{ij}\) 的相应模型算子就是次椭圆的,平移不变的。(\mathbb{R}^{N+1}\)中的一个李群运算时是次椭圆的、平移不变的,并且在非各向同性的扩张族中是2-同调的。矩阵 \((a_{ij})_{i,j=1}^{m_{0}}\) 在 \(\mathbb {R}^{m_{0}}\) 上对称且均匀为正。系数 \(a_{ij}\)在空间上是有界和迪尼连续的,而在时间上只有有界可测。这意味着,设置 $$\begin{aligned}\mathrm {(i)}&\,\,S_{T}=\mathbb {R}^{N}\times \left( -\infty ,T\right) ,\\mathrm {(ii)}&;\sup _{begin{array}{c} (x,t),(y,t)\in S_{T}\Vert x-y\Vert \le r \end{array}}\vert f(x,t) -f(y,t)\vert \\mathrm {(iii)}&;\f\Vert _{mathcal {D}( S_{T}) } =\int _{0}^{1}\frac{omega _{f,S_{T}}(r) }{r}dr+\Vert f\Vert _{L^{\infty }\left( S_{T}\right) }\end{aligned}$$ 我们要求 \(\Vert a_{ij}\Vert _{mathcal {D}(S_{T})}\) 的有限性。We bound \(\omega _{u_{x_{i}x_{j}},S_{T}}\) , \(\Vert u_{x_{i}x_{j}}\Vert _{L^{infty }( S_{T}) }\) ( ( i,j=1,2,...,m_{0}\) ), \(\omega _{Yu,S_{T}}\) ,\(\Vert Yu\Vert _{L^{infty }( S_{T}) }\) in terms of \(\omega _{mathcal {L}u、S_{T}}\) ,\(\Vert \mathcal {L}u\Vert _{L^{\infty }( S_{T}) }\) and\(\Vert u\Vert _{L^{\infty }\left( S_{T}\right) }\)如果 \(\mathcal {L}u\) 在空间中是有界的和迪尼连续的,那么就可以控制 \(u_{x_{i}x_{j}},Yu\) 在空间中的均匀连续性。在系数 \(a_{ij}\) 和 \(\mathcal {L}u\) 都是对数-迪尼连续的额外假设下,意味着数量 $$\begin{aligned} 的有限性。\int _{0}^{1}\frac{omega _{f,S_{T}}\left( r\right) }{r}\left| \log r\right| dr, \end{aligned}$$我们证明\(u_{x_{i}x_{j}}\)和Yu是Dini连续的;此外,在这种情况下,导数\(u_{x_{i}x_{j}}\)在空间和时间上是局部均匀连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信