Watanabe's expansion: A Solution for the convexity conundrum

David García-Lorite, Raul Merino
{"title":"Watanabe's expansion: A Solution for the convexity conundrum","authors":"David García-Lorite, Raul Merino","doi":"arxiv-2404.01522","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new method for pricing CMS derivatives. We use\nMallaivin's calculus to establish a model-free connection between the price of\na CMS derivative and a quadratic payoff. Then, we apply Watanabe's expansions\nto quadratic payoffs case under local and stochastic local volatility. Our\napproximations are generic. To evaluate their accuracy, we will compare the\napproximations numerically under the normal SABR model against the market\nstandards: Hagan's approximation, and a Monte Carlo simulation.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.01522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a new method for pricing CMS derivatives. We use Mallaivin's calculus to establish a model-free connection between the price of a CMS derivative and a quadratic payoff. Then, we apply Watanabe's expansions to quadratic payoffs case under local and stochastic local volatility. Our approximations are generic. To evaluate their accuracy, we will compare the approximations numerically under the normal SABR model against the market standards: Hagan's approximation, and a Monte Carlo simulation.
渡边扩展凸性难题的解决方案
在本文中,我们提出了一种为 CMS 衍生工具定价的新方法。我们使用马来文微积分在 CMS 衍生工具的价格和二次报酬之间建立了无模型联系。然后,我们将渡边的扩展应用于局部和随机局部波动下的二次报酬情况。我们的近似值是通用的。为了评估它们的准确性,我们将在正常 SABR 模型下用数字比较这些近似值与市场标准:哈根近似和蒙特卡罗模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信