Scaling regimes of the one-dimensional phase turbulence in the deterministic complex Ginzburg-Landau equation

Francesco Vercesi, Susie Poirier, Anna Minguzzi, Léonie Canet
{"title":"Scaling regimes of the one-dimensional phase turbulence in the deterministic complex Ginzburg-Landau equation","authors":"Francesco Vercesi, Susie Poirier, Anna Minguzzi, Léonie Canet","doi":"arxiv-2404.08530","DOIUrl":null,"url":null,"abstract":"We study the phase turbulence of the one-dimensional complex Ginzburg-Landau\nequation, in which the defect-free chaotic dynamics of the order parameter maps\nto a phase equation well approximated by the Kuramoto-Sivashinsky model. In\nthis regime, the behaviour of the large wavelength modes is captured by the\nKardar-Parisi-Zhang equation, determining universal scaling and statistical\nproperties. We present numerical evidence of the existence of an additional\nscale-invariant regime, with dynamical scaling exponent $z=1$, emerging at\nscales which are intermediate between the microscopic, intrinsic to the\nmodulational instability, and the macroscopic ones. We argue that this new\nregime is a signature of the universality class corresponding to the inviscid\nlimit of the Kardar-Parisi-Zhang equation.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.08530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the phase turbulence of the one-dimensional complex Ginzburg-Landau equation, in which the defect-free chaotic dynamics of the order parameter maps to a phase equation well approximated by the Kuramoto-Sivashinsky model. In this regime, the behaviour of the large wavelength modes is captured by the Kardar-Parisi-Zhang equation, determining universal scaling and statistical properties. We present numerical evidence of the existence of an additional scale-invariant regime, with dynamical scaling exponent $z=1$, emerging at scales which are intermediate between the microscopic, intrinsic to the modulational instability, and the macroscopic ones. We argue that this new regime is a signature of the universality class corresponding to the inviscid limit of the Kardar-Parisi-Zhang equation.
确定性复合金兹堡-朗道方程中一维相湍流的缩放机制
我们研究了一维复杂金兹堡-朗达方程的相湍流,其中阶次参数的无缺陷混沌动力学映射到一个由 Kuramoto-Sivashinsky 模型近似的相方程。在这个体系中,大波长模式的行为被卡达尔-帕里西-张方程所捕捉,决定了普遍的缩放和统计特性。我们提出了数值证据,证明存在一个额外的尺度不变体系,其动力学尺度指数为 $z=1$,出现在介于微观尺度(调制不稳定性的内在因素)和宏观尺度之间。我们认为,这一新制度是与卡尔达-帕里西-张方程的不粘性极限相对应的普遍性类别的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信