Two-phase almost minimizers for a fractional free boundary problem

Mark Allen, Mariana Smit Vega Garcia
{"title":"Two-phase almost minimizers for a fractional free boundary problem","authors":"Mark Allen, Mariana Smit Vega Garcia","doi":"10.1007/s00030-024-00937-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study almost minimizers to a fractional Alt–Caffarelli–Friedman type functional. Our main results concern the optimal <span>\\(C^{0,s}\\)</span> regularity of almost minimizers as well as the structure of the free boundary. We first prove that the two free boundaries <span>\\(F^+(u)=\\partial \\{u(\\cdot ,0)&gt;0\\}\\)</span> and <span>\\(F^-(u)=\\partial \\{u(\\cdot ,0)&lt;0\\}\\)</span> cannot touch, that is, <span>\\(F^+(u)\\cap F^-(u)=\\emptyset \\)</span>. Lastly, we prove a flatness implies <span>\\(C^{1,\\gamma }\\)</span> result for the free boundary.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00937-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study almost minimizers to a fractional Alt–Caffarelli–Friedman type functional. Our main results concern the optimal \(C^{0,s}\) regularity of almost minimizers as well as the structure of the free boundary. We first prove that the two free boundaries \(F^+(u)=\partial \{u(\cdot ,0)>0\}\) and \(F^-(u)=\partial \{u(\cdot ,0)<0\}\) cannot touch, that is, \(F^+(u)\cap F^-(u)=\emptyset \). Lastly, we prove a flatness implies \(C^{1,\gamma }\) result for the free boundary.

分数自由边界问题的两相几乎最小化
在本文中,我们研究了分数 Alt-Caffarelli-Friedman 型函数的几乎最小值。我们的主要结果涉及几乎最小化的最优 \(C^{0,s}\) 正则性以及自由边界的结构。我们首先证明了两个自由边界 \(F^+(u)=\partial \{u(\cdot,0)>0/}\)和 \(F^-(u)=\partial \{u(\cdot,0)<0/}\)不能接触,即 \(F^+(u)\cap F^-(u)=\emptyset \)。最后,我们证明了自由边界的平坦性意味着(C^{1,\gamma }\ )结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信