Global solutions to the Kirchhoff equation with spectral gap data in the energy space

Marina Ghisi, Massimo Gobbino
{"title":"Global solutions to the Kirchhoff equation with spectral gap data in the energy space","authors":"Marina Ghisi, Massimo Gobbino","doi":"10.1007/s00030-024-00933-8","DOIUrl":null,"url":null,"abstract":"<p>We prove that the classical hyperbolic Kirchhoff equation admits global-in-time solutions for some classes of initial data in the energy space. We also show that there are enough such solutions so that every initial datum in the energy space is the sum of two initial data for which a global-in-time solution exists. The proof relies on the notion of spectral gap data, namely initial data whose components vanish for large intervals of frequencies. We do not pass through the linearized equation, because it is not well-posed at this low level of regularity.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"208 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00933-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the classical hyperbolic Kirchhoff equation admits global-in-time solutions for some classes of initial data in the energy space. We also show that there are enough such solutions so that every initial datum in the energy space is the sum of two initial data for which a global-in-time solution exists. The proof relies on the notion of spectral gap data, namely initial data whose components vanish for large intervals of frequencies. We do not pass through the linearized equation, because it is not well-posed at this low level of regularity.

基尔霍夫方程的全局解与能量空间的谱隙数据
我们证明了经典双曲基尔霍夫方程对于能量空间中某些类别的初始数据具有全局时间解。我们还证明存在足够多的此类解,因此能量空间中的每个初始数据都是存在全局时间解的两个初始数据之和。证明依赖于频谱间隙数据的概念,即其分量在较大频率间隔内消失的初始数据。我们不通过线性化方程,因为在这种低水平的正则性下,该方程并不能很好地求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信