Napoleonic Triangles on the Sphere

{"title":"Napoleonic Triangles on the Sphere","authors":"","doi":"10.1007/s00574-024-00393-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>As is well-known, numerical experiments show that Napoleon’s Theorem for planar triangles does not extend to a similar statement for triangles on the unit sphere <span> <span>\\(S^2\\)</span> </span>. Spherical triangles for which an extension of Napoleon’s Theorem holds are called <em>Napoleonic</em>, and until now the only known examples have been equilateral. In this paper we determine all Napoleonic spherical triangles, including a class corresponding to points on a 2-dimensional ellipsoid, whose Napoleonisations are all congruent. Other new classes of examples are also found, according to different versions of Napoleon’s Theorem for the sphere. The classification follows from successive simplifications of a complicated original algebraic condition, exploiting geometric symmetries and algebraic factorisations.</p>","PeriodicalId":501417,"journal":{"name":"Bulletin of the Brazilian Mathematical Society, New Series","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Brazilian Mathematical Society, New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00574-024-00393-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As is well-known, numerical experiments show that Napoleon’s Theorem for planar triangles does not extend to a similar statement for triangles on the unit sphere \(S^2\) . Spherical triangles for which an extension of Napoleon’s Theorem holds are called Napoleonic, and until now the only known examples have been equilateral. In this paper we determine all Napoleonic spherical triangles, including a class corresponding to points on a 2-dimensional ellipsoid, whose Napoleonisations are all congruent. Other new classes of examples are also found, according to different versions of Napoleon’s Theorem for the sphere. The classification follows from successive simplifications of a complicated original algebraic condition, exploiting geometric symmetries and algebraic factorisations.

球体上的拿破仑三角形
摘要 众所周知,数值实验表明,平面三角形的拿破仑定理并没有扩展到单位球面上三角形的类似说法。拿破仑定理扩展成立的球面三角形被称为拿破仑三角形,迄今为止已知的例子只有等边三角形。在本文中,我们确定了所有拿破仑球面三角形,包括一类与二维椭球体上的点相对应的三角形,它们的拿破仑解都是全等的。根据球面拿破仑定理的不同版本,我们还发现了其他新的例子类别。利用几何对称性和代数因式,对复杂的原始代数条件进行了连续简化,从而得出了这一分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信