{"title":"On the Euclidean Distance between Two Gaussian Points and the Normal Covariogram of $$\\boldsymbol{\\mathbb{R}}^{\\boldsymbol{d}}$$","authors":"D. M. Martirosyan, V. K. Ohanyan","doi":"10.3103/s1068362324010059","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The concept of covariogram is extended from bounded convex bodies in <span>\\(\\mathbb{R}^{d}\\)</span> to the entire space <span>\\(\\mathbb{R}^{d}\\)</span> by obtaining integral representations for the distribution and probability density functions of the Euclidean distance between two <span>\\(d\\)</span>-dimensional Gaussian points that have correlated coordinates governed by a covariance matrix. When <span>\\(d=2\\)</span>, a closed-form expression for the density function is obtained. Precise bounds for the moments of the considered distance are found in terms of the extreme eigenvalues of the covariance matrix.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362324010059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The concept of covariogram is extended from bounded convex bodies in \(\mathbb{R}^{d}\) to the entire space \(\mathbb{R}^{d}\) by obtaining integral representations for the distribution and probability density functions of the Euclidean distance between two \(d\)-dimensional Gaussian points that have correlated coordinates governed by a covariance matrix. When \(d=2\), a closed-form expression for the density function is obtained. Precise bounds for the moments of the considered distance are found in terms of the extreme eigenvalues of the covariance matrix.