On the Euclidean Distance between Two Gaussian Points and the Normal Covariogram of $$\boldsymbol{\mathbb{R}}^{\boldsymbol{d}}$$

Pub Date : 2024-04-09 DOI:10.3103/s1068362324010059
D. M. Martirosyan, V. K. Ohanyan
{"title":"On the Euclidean Distance between Two Gaussian Points and the Normal Covariogram of $$\\boldsymbol{\\mathbb{R}}^{\\boldsymbol{d}}$$","authors":"D. M. Martirosyan, V. K. Ohanyan","doi":"10.3103/s1068362324010059","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The concept of covariogram is extended from bounded convex bodies in <span>\\(\\mathbb{R}^{d}\\)</span> to the entire space <span>\\(\\mathbb{R}^{d}\\)</span> by obtaining integral representations for the distribution and probability density functions of the Euclidean distance between two <span>\\(d\\)</span>-dimensional Gaussian points that have correlated coordinates governed by a covariance matrix. When <span>\\(d=2\\)</span>, a closed-form expression for the density function is obtained. Precise bounds for the moments of the considered distance are found in terms of the extreme eigenvalues of the covariance matrix.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362324010059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The concept of covariogram is extended from bounded convex bodies in \(\mathbb{R}^{d}\) to the entire space \(\mathbb{R}^{d}\) by obtaining integral representations for the distribution and probability density functions of the Euclidean distance between two \(d\)-dimensional Gaussian points that have correlated coordinates governed by a covariance matrix. When \(d=2\), a closed-form expression for the density function is obtained. Precise bounds for the moments of the considered distance are found in terms of the extreme eigenvalues of the covariance matrix.

分享
查看原文
论两个高斯点与 $$\boldsymbol\{mathbb{R}}^{boldsymbol{d}}$ 的正态协方差图之间的欧氏距离
摘要 协方差的概念从\(\mathbb{R}^{d}\)中的有界凸体扩展到了\(\mathbb{R}^{d}\)的整个空间,得到了两个\(d\)维高斯点之间欧氏距离的分布和概率密度函数的积分表示,这两个高斯点具有由协方差矩阵支配的相关坐标。当 \(d=2\) 时,可以得到密度函数的闭式表达式。根据协方差矩阵的极值特征值,可以找到所考虑的距离矩的精确边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信