Anjali Verma , Jun Li , Arthur P. Ramirez , M.A. Subramanian
{"title":"Understanding color variation with site distribution in inverse spinel structure via neutron diffraction, magnetism, and optical studies","authors":"Anjali Verma , Jun Li , Arthur P. Ramirez , M.A. Subramanian","doi":"10.1016/j.progsolidstchem.2024.100455","DOIUrl":null,"url":null,"abstract":"<div><p>Chromophores at different coordinations can give rise to different colors; usually, chromophores at non-centrosymmetric coordinations are preferred for intense pigments. Different solid solutions <em>M</em><sub>2-<em>x</em></sub>Co<sub><em>x</em></sub><em>M’</em>O<sub>4</sub> (<em>M</em> = Mg/Zn, and <em>M’ =</em> Ti/Sn) with inverse spinel structure were synthesized with the goal of understanding color variation with site distribution, as the chromophore Co<sup>2+</sup> in these solid solutions can occupy either the tetrahedral or octahedral sites or both depending on the composition. Another goal was to develop environmentally friendly and cheap blue pigments by reducing the carcinogenic cobalt to obtain a similar color to that of commercially available cobalt blue, which uses a significant amount of Co<sup>2+</sup> (33.31 % by mass). For Mg<sub>2-<em>x</em></sub>Co<sub><em>x</em></sub>TiO<sub>4</sub> series, turquoise blue hues were observed for low cobalt content, and different shades of blue were observed for Mg<sub>2-<em>x</em></sub>Co<sub><em>x</em></sub>SnO<sub>4</sub> series with a color similar to cobalt blue, including just 4.90% of cobalt by mass. While for Zn<sub>2-<em>x</em></sub>Co<sub><em>x</em></sub>TiO<sub>4</sub>, and Zn<sub>2-<em>x</em></sub>Co<sub><em>x</em></sub>SnO<sub>4</sub> series, different shades of brown and different shades of green, respectively, were observed. One of the main reasons behind the major difference in color for the Mg and Zn containing solid solutions, regardless of the same chromophore in the same structure is related to the chromophore site distribution in the system. For the Mg-containing solid solutions, different shades of blue are observed as Mg has no preference for any of the sites, Co<sup>2+</sup> mostly goes to tetrahedral sites. In contrast, for the Zn-containing solid solutions, no blue shades were observed because of the strong preference of Zn for the tetrahedral sites owing to the sp<sup>3</sup> hybridization, which in turn forces Co<sup>2+</sup> to occupy the octahedral sites. Neutron refinement proves that Co<sup>2+</sup> occupies mainly tetrahedral sites in the Mg-containing solid solutions and mostly octahedral sites in the Zn-containing solid solutions.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"74 ","pages":"Article 100455"},"PeriodicalIF":9.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079678624000189","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Chromophores at different coordinations can give rise to different colors; usually, chromophores at non-centrosymmetric coordinations are preferred for intense pigments. Different solid solutions M2-xCoxM’O4 (M = Mg/Zn, and M’ = Ti/Sn) with inverse spinel structure were synthesized with the goal of understanding color variation with site distribution, as the chromophore Co2+ in these solid solutions can occupy either the tetrahedral or octahedral sites or both depending on the composition. Another goal was to develop environmentally friendly and cheap blue pigments by reducing the carcinogenic cobalt to obtain a similar color to that of commercially available cobalt blue, which uses a significant amount of Co2+ (33.31 % by mass). For Mg2-xCoxTiO4 series, turquoise blue hues were observed for low cobalt content, and different shades of blue were observed for Mg2-xCoxSnO4 series with a color similar to cobalt blue, including just 4.90% of cobalt by mass. While for Zn2-xCoxTiO4, and Zn2-xCoxSnO4 series, different shades of brown and different shades of green, respectively, were observed. One of the main reasons behind the major difference in color for the Mg and Zn containing solid solutions, regardless of the same chromophore in the same structure is related to the chromophore site distribution in the system. For the Mg-containing solid solutions, different shades of blue are observed as Mg has no preference for any of the sites, Co2+ mostly goes to tetrahedral sites. In contrast, for the Zn-containing solid solutions, no blue shades were observed because of the strong preference of Zn for the tetrahedral sites owing to the sp3 hybridization, which in turn forces Co2+ to occupy the octahedral sites. Neutron refinement proves that Co2+ occupies mainly tetrahedral sites in the Mg-containing solid solutions and mostly octahedral sites in the Zn-containing solid solutions.
期刊介绍:
Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.