Movability of Morphisms in an Enriched Pro-Category and in a $$\boldsymbol{J}$$ -Shape Category

Pub Date : 2024-04-09 DOI:10.3103/s1068362324010035
P. S. Gevorgyan, I. Pop
{"title":"Movability of Morphisms in an Enriched Pro-Category and in a $$\\boldsymbol{J}$$ -Shape Category","authors":"P. S. Gevorgyan, I. Pop","doi":"10.3103/s1068362324010035","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Various types of movability for abstract classical pro-morphisms or coherent mappings, and for abstract classical or strong shape morphisms was given by the same authors in some previous paper [10–12]. In the present paper we introduce and study the notions of (uniform) movability, and (uniform) co-movability for a new type of pro-morphisms and shape morphisms belonging to the so called enriched pro-category <span>\\(pro^{J}\\)</span>-<span>\\(\\mathcal{C}\\)</span> and to the corresponding shape category <span>\\(Sh^{J}_{(\\mathcal{C},\\mathcal{D})}\\)</span>, which were introduced by Uglešić [27].</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362324010035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Various types of movability for abstract classical pro-morphisms or coherent mappings, and for abstract classical or strong shape morphisms was given by the same authors in some previous paper [10–12]. In the present paper we introduce and study the notions of (uniform) movability, and (uniform) co-movability for a new type of pro-morphisms and shape morphisms belonging to the so called enriched pro-category \(pro^{J}\)-\(\mathcal{C}\) and to the corresponding shape category \(Sh^{J}_{(\mathcal{C},\mathcal{D})}\), which were introduced by Uglešić [27].

分享
查看原文
丰富的原类和 $$\boldsymbol{J}$ 形类中形态的可动性
摘要 抽象经典原态或相干映射以及抽象经典或强形状形态的各种可动性是由同一作者在以前的一些论文[10-12]中给出的。在本文中,我们引入并研究了(统一)可移动性和(统一)共可移动性的概念,这些概念适用于属于所谓的丰富原范畴(pro^{J}\)-(\mathcal{C}\)和相应的形状范畴(Sh^{J}_{(\mathcal{C},\mathcal{D}}\)的新型原形态和形状形态,它们是由尤格利希奇(Uglešić)[27]引入的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信