Fast rotation and inviscid limits for the SQG equation with general ill-prepared initial data

Gabriele Sbaiz, Leonardo Kosloff
{"title":"Fast rotation and inviscid limits for the SQG equation with general ill-prepared initial data","authors":"Gabriele Sbaiz, Leonardo Kosloff","doi":"10.1007/s00030-024-00942-7","DOIUrl":null,"url":null,"abstract":"<p>In the present paper, we study the fast rotation and inviscid limits for the 2-D dissipative surface quasi-geostrophic equation with a dispersive forcing term, in the domain <span>\\(\\Omega =\\mathbb {T}^1\\times \\mathbb {R}\\)</span>. In the case when we perform the fast rotation limit (keeping the viscosity fixed), in the context of general ill-prepared initial data, we prove that the limit dynamics is described by a linear equation with parabolic structure. Conversely, performing the combined fast rotation and inviscid limits, we show that the means of the target initial datum <span>\\(\\overline{\\vartheta }_0\\)</span> are conserved along the motion. The proof of the convergence is based on a compensated compactness argument which allows, on the one hand, to get compactness properties for suitable quantities hidden in the wave system and, on the other hand, to exclude the oscillatory part of waves at the limit.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00942-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we study the fast rotation and inviscid limits for the 2-D dissipative surface quasi-geostrophic equation with a dispersive forcing term, in the domain \(\Omega =\mathbb {T}^1\times \mathbb {R}\). In the case when we perform the fast rotation limit (keeping the viscosity fixed), in the context of general ill-prepared initial data, we prove that the limit dynamics is described by a linear equation with parabolic structure. Conversely, performing the combined fast rotation and inviscid limits, we show that the means of the target initial datum \(\overline{\vartheta }_0\) are conserved along the motion. The proof of the convergence is based on a compensated compactness argument which allows, on the one hand, to get compactness properties for suitable quantities hidden in the wave system and, on the other hand, to exclude the oscillatory part of waves at the limit.

具有一般非准备初始数据的 SQG 方程的快速旋转和不粘性极限
在本文中,我们研究了在域(\Omega =\mathbb {T}^1\times\mathbb {R}\)中带有分散强迫项的二维耗散表面准地转方程的快速旋转和不粘性极限。在我们执行快速旋转极限(保持粘度固定)时,在初始数据准备不足的情况下,我们证明极限动力学是由一个抛物线结构的线性方程描述的。反之,在执行快速旋转和粘性极限的组合时,我们证明目标初始数据的均值(\overline{\vartheta }_0\)在运动过程中是守恒的。收敛性的证明基于一个补偿的紧凑性论证,它一方面允许获得隐藏在波系统中的合适量的紧凑性,另一方面允许在极限时排除波的振荡部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信