Uniqueness of $$\boldsymbol{L}$$ -Functions and General Meromorphic Functions in Light of Two Shared Sets

Pub Date : 2024-04-09 DOI:10.3103/s1068362324010060
R. Saha, S. Mallick
{"title":"Uniqueness of $$\\boldsymbol{L}$$ -Functions and General Meromorphic Functions in Light of Two Shared Sets","authors":"R. Saha, S. Mallick","doi":"10.3103/s1068362324010060","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, we have dealt with the uniqueness problem of a general meromorphic function with <span>\\(\\mathcal{L}\\)</span> function in terms of two shared sets. In our main theorem, we deal with general meromorphic functions instead of meromorphic functions having finitely many poles. As a corollary of our main theorem, we have shown that our result not only fills the gap of some theorems of [3] and [1] for <span>\\(m=n-1\\)</span> but also reduces the cardinality of the main range set and hence our result significantly improves all the results in this direction.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362324010060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we have dealt with the uniqueness problem of a general meromorphic function with \(\mathcal{L}\) function in terms of two shared sets. In our main theorem, we deal with general meromorphic functions instead of meromorphic functions having finitely many poles. As a corollary of our main theorem, we have shown that our result not only fills the gap of some theorems of [3] and [1] for \(m=n-1\) but also reduces the cardinality of the main range set and hence our result significantly improves all the results in this direction.

分享
查看原文
从两个共享集看$$\boldsymbol{L}$-函数和一般同态函数的唯一性
摘要 在本文中,我们用两个共享集处理了具有 \(\mathcal{L}\)函数的一般同调函数的唯一性问题。在我们的主定理中,我们处理的是一般的非定常函数,而不是具有有限多个极点的非定常函数。作为我们主定理的一个推论,我们证明了我们的结果不仅填补了 [3] 和 [1] 关于 \(m=n-1\) 的一些定理的空白,而且还减少了主范围集的 cardinality,因此我们的结果大大改进了这个方向上的所有结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信