{"title":"Sensitivity Analysis of Ionization in Two-Temperature Models of Hypersonic Airflows","authors":"Timothy T. Aiken, Iain. D. Boyd","doi":"10.2514/1.t6909","DOIUrl":null,"url":null,"abstract":"<p>Plasma generation in hypersonic flows is analyzed using a two-temperature model of nonequilibrium air. The uncertainties in electron number density predictions are assessed for flow scenarios that correspond to both strongly shocked and strongly expanded flows, and the dependencies of the calculated uncertainties on individual input parameters are quantified. Ionization levels behind 5 and 7 km/s normal shocks are found to be most sensitive to the associative ionization reactions producing <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mrow><msubsup><mi mathvariant=\"normal\">O</mi><mn>2</mn><mo>+</mo></msubsup></mrow></math></span><span></span> and <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mrow><msup><mi>NO</mi><mo>+</mo></msup></mrow></math></span><span></span> in the region of peak electron number density, with nitric oxide kinetics dominating the uncertainty downstream. The higher levels of ionization behind a 9 km/s shock are found to strongly depend on the electron impact ionization of atomic nitrogen as well as the charge exchange between <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mrow><msubsup><mi mathvariant=\"normal\">N</mi><mn>2</mn><mo>+</mo></msubsup></mrow></math></span><span></span> and N. Recombining flow scenarios depend on many of the same processes that influence the shocked flows, with the notable addition of the reassociation reaction <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mrow><msup><mrow><mi mathvariant=\"normal\">O</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>+</mo><msub><mrow><mi mathvariant=\"normal\">N</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">↔</mo><msup><mrow><mi>NO</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>+</mo><mi mathvariant=\"normal\">N</mi></mrow></math></span><span></span>, which is responsible for large uncertainties in electron number density in net recombining flows. The results provide valuable insight into the typical magnitude of uncertainty associated with plasma formation predictions in hypersonic flows and identify the parameters that should be targeted in efforts to reduce those uncertainties.</p>","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6909","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Plasma generation in hypersonic flows is analyzed using a two-temperature model of nonequilibrium air. The uncertainties in electron number density predictions are assessed for flow scenarios that correspond to both strongly shocked and strongly expanded flows, and the dependencies of the calculated uncertainties on individual input parameters are quantified. Ionization levels behind 5 and 7 km/s normal shocks are found to be most sensitive to the associative ionization reactions producing and in the region of peak electron number density, with nitric oxide kinetics dominating the uncertainty downstream. The higher levels of ionization behind a 9 km/s shock are found to strongly depend on the electron impact ionization of atomic nitrogen as well as the charge exchange between and N. Recombining flow scenarios depend on many of the same processes that influence the shocked flows, with the notable addition of the reassociation reaction , which is responsible for large uncertainties in electron number density in net recombining flows. The results provide valuable insight into the typical magnitude of uncertainty associated with plasma formation predictions in hypersonic flows and identify the parameters that should be targeted in efforts to reduce those uncertainties.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.