Wavelet scattering transform and deep features for automated classification and grading of dates fruit

3区 计算机科学 Q1 Computer Science
Newlin Shebiah Russel, Arivazhagan Selvaraj
{"title":"Wavelet scattering transform and deep features for automated classification and grading of dates fruit","authors":"Newlin Shebiah Russel, Arivazhagan Selvaraj","doi":"10.1007/s12652-024-04786-y","DOIUrl":null,"url":null,"abstract":"<p>Date fruit, a vital agricultural product in the Middle East area, is harvested annually in millions of metric tons and is renowned for its abundant nutrients. With computer vision and machine learning techniques, automatic date fruit classification enables farmers and supermarkets to differentiate between various varieties and qualities of date fruits within their inventory. Date fruits have unique physical characteristics, such as shape, size, color, texture, and skin type that are important in determining their variety and quality. These characteristics can vary significantly depending on the cultivar, growing conditions, and ripening stage of the date fruits. This paper presents a novel date fruit type classification and grading system achieved through the feature-level fusion of deep learning features and wavelet scattering features. Wavelet scattering features are extracted at varying levels of decomposition; enabling reliable extraction of information from diverse channels. To extract deep features this study utilizes pre-trained architectures, including Alexnet, Googlenet, Resnet, and MobileNetV2. The proposed methodology has been experimentally evaluated with the Date Fruit in Controlled Environment dataset, which has nine classes, and has yielded an accuracy of 95.9% for date species classification. Various date fruit species from the TU-DG dataset were graded, and for Ajwa species, the accuracy is 97.8%, for Mabroom, 92.6% accuracy, and for Sukkary, 99.5% accuracy.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Humanized Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12652-024-04786-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Date fruit, a vital agricultural product in the Middle East area, is harvested annually in millions of metric tons and is renowned for its abundant nutrients. With computer vision and machine learning techniques, automatic date fruit classification enables farmers and supermarkets to differentiate between various varieties and qualities of date fruits within their inventory. Date fruits have unique physical characteristics, such as shape, size, color, texture, and skin type that are important in determining their variety and quality. These characteristics can vary significantly depending on the cultivar, growing conditions, and ripening stage of the date fruits. This paper presents a novel date fruit type classification and grading system achieved through the feature-level fusion of deep learning features and wavelet scattering features. Wavelet scattering features are extracted at varying levels of decomposition; enabling reliable extraction of information from diverse channels. To extract deep features this study utilizes pre-trained architectures, including Alexnet, Googlenet, Resnet, and MobileNetV2. The proposed methodology has been experimentally evaluated with the Date Fruit in Controlled Environment dataset, which has nine classes, and has yielded an accuracy of 95.9% for date species classification. Various date fruit species from the TU-DG dataset were graded, and for Ajwa species, the accuracy is 97.8%, for Mabroom, 92.6% accuracy, and for Sukkary, 99.5% accuracy.

Abstract Image

用于枣果自动分类和分级的小波散射变换和深度特征
椰枣果是中东地区的重要农产品,每年收获量达数百万吨,以其丰富的营养而闻名。利用计算机视觉和机器学习技术,椰枣果实自动分类技术可帮助果农和超市区分库存中不同品种和品质的椰枣果实。椰枣果实具有独特的物理特征,如形状、大小、颜色、质地和果皮类型,这些对确定其品种和质量非常重要。这些特征会因枣果的栽培品种、生长条件和成熟阶段的不同而有很大差异。本文通过深度学习特征和小波散射特征的特征级融合,提出了一种新颖的枣果类型分类和分级系统。小波散射特征是在不同的分解级别上提取的,可以从不同的通道中可靠地提取信息。为了提取深度特征,本研究使用了预先训练好的架构,包括 Alexnet、Googlenet、Resnet 和 MobileNetV2。所提出的方法已在包含九个类别的 "受控环境中的枣果 "数据集上进行了实验评估,枣果种类分类的准确率达到 95.9%。对 TU-DG 数据集中的各种椰枣果实种类进行了分级,对 Ajwa 种类的准确率为 97.8%,对 Mabroom 的准确率为 92.6%,对 Sukkary 的准确率为 99.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Ambient Intelligence and Humanized Computing
Journal of Ambient Intelligence and Humanized Computing COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
9.60
自引率
0.00%
发文量
854
期刊介绍: The purpose of JAIHC is to provide a high profile, leading edge forum for academics, industrial professionals, educators and policy makers involved in the field to contribute, to disseminate the most innovative researches and developments of all aspects of ambient intelligence and humanized computing, such as intelligent/smart objects, environments/spaces, and systems. The journal discusses various technical, safety, personal, social, physical, political, artistic and economic issues. The research topics covered by the journal are (but not limited to): Pervasive/Ubiquitous Computing and Applications Cognitive wireless sensor network Embedded Systems and Software Mobile Computing and Wireless Communications Next Generation Multimedia Systems Security, Privacy and Trust Service and Semantic Computing Advanced Networking Architectures Dependable, Reliable and Autonomic Computing Embedded Smart Agents Context awareness, social sensing and inference Multi modal interaction design Ergonomics and product prototyping Intelligent and self-organizing transportation networks & services Healthcare Systems Virtual Humans & Virtual Worlds Wearables sensors and actuators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信