{"title":"A Characterization of Invariant Subspaces for Isometric Representations of Product System over $$\\mathbb {N}_0^{k}$$","authors":"Dimple Saini, Harsh Trivedi, Shankar Veerabathiran","doi":"10.1007/s11785-024-01520-6","DOIUrl":null,"url":null,"abstract":"<p>Using the Wold–von Neumann decomposition for the isometric covariant representations due to Muhly and Solel, we prove an explicit representation of the commutant of a doubly commuting pure isometric representation of the product system over <span>\\(\\mathbb {N}_0^{k}.\\)</span> As an application we study a complete characterization of invariant subspaces for a doubly commuting pure isometric representation of the product system. This provides us a complete set of isomorphic invariants. Finally, we classify a large class of an isometric covariant representations of the product system.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"10 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01520-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Using the Wold–von Neumann decomposition for the isometric covariant representations due to Muhly and Solel, we prove an explicit representation of the commutant of a doubly commuting pure isometric representation of the product system over \(\mathbb {N}_0^{k}.\) As an application we study a complete characterization of invariant subspaces for a doubly commuting pure isometric representation of the product system. This provides us a complete set of isomorphic invariants. Finally, we classify a large class of an isometric covariant representations of the product system.
期刊介绍:
Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.