On Row Differential Inequalities Related to Normality and Quasi-normality

Pub Date : 2024-04-08 DOI:10.1007/s40315-024-00524-9
Tomer Manket, Shahar Nevo
{"title":"On Row Differential Inequalities Related to Normality and Quasi-normality","authors":"Tomer Manket, Shahar Nevo","doi":"10.1007/s40315-024-00524-9","DOIUrl":null,"url":null,"abstract":"<p>We study connections between a new type of linear differential inequalities and normality or quasi-normality. We prove that if <span>\\(C&gt;0\\)</span>, <span>\\(k\\ge 1\\)</span> and <span>\\(a_0(z),\\dots ,a_{k-1}(z)\\)</span> are fixed holomorphic functions in a domain <i>D</i>, then the family of the holomorphic functions <i>f</i> in <i>D</i>, satisfying for every <span>\\(z\\in D\\)</span></p><span>$$\\begin{aligned} \\left| f^{(k)}(z) + a_{k-1}(z)f^{(k-1)}(z)+\\cdots +a_0(z)f(z)\\right| &lt; C \\end{aligned}$$</span><p>is quasi-normal in <i>D</i>. For the reversed sign of the inequality we show the following: Suppose that <span>\\(A,B\\in {{\\mathbb {C}}}\\)</span>, <span>\\(C&gt;0\\)</span> and <span>\\(\\mathcal {F}\\)</span> is a family of meromorphic functions <i>f</i> satisfying for every <span>\\(z\\in D\\)</span></p><span>$$\\begin{aligned} \\left| f^{''}(z) + Af^{'}(z) + B f(z)\\right| &gt; C \\end{aligned}$$</span><p>and also at least one of the families <span>\\(\\left\\{ f'/f:f\\in \\mathcal {F}\\right\\} \\)</span> or <span>\\(\\left\\{ f''/f:f\\in \\mathcal {F}\\right\\} \\)</span> is normal. Then <span>\\(\\mathcal {F}\\)</span> is quasi-normal in <i>D</i>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00524-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study connections between a new type of linear differential inequalities and normality or quasi-normality. We prove that if \(C>0\), \(k\ge 1\) and \(a_0(z),\dots ,a_{k-1}(z)\) are fixed holomorphic functions in a domain D, then the family of the holomorphic functions f in D, satisfying for every \(z\in D\)

$$\begin{aligned} \left| f^{(k)}(z) + a_{k-1}(z)f^{(k-1)}(z)+\cdots +a_0(z)f(z)\right| < C \end{aligned}$$

is quasi-normal in D. For the reversed sign of the inequality we show the following: Suppose that \(A,B\in {{\mathbb {C}}}\), \(C>0\) and \(\mathcal {F}\) is a family of meromorphic functions f satisfying for every \(z\in D\)

$$\begin{aligned} \left| f^{''}(z) + Af^{'}(z) + B f(z)\right| > C \end{aligned}$$

and also at least one of the families \(\left\{ f'/f:f\in \mathcal {F}\right\} \) or \(\left\{ f''/f:f\in \mathcal {F}\right\} \) is normal. Then \(\mathcal {F}\) is quasi-normal in D.

分享
查看原文
论与正态性和准正态性有关的行微分不等式
我们研究了一种新型线性微分不等式与正态性或准正态性之间的联系。我们证明,如果 \(C>0\), \(k\ge 1\) 和 \(a_0(z),\dots ,a_{k-1}(z)\) 是域 D 中的固定全纯函数,那么 D 中的全纯函数 f 的族,满足对于每一个 \(z\in D\)$$\begin{aligned}\left| f^{(k)}(z) + a_{k-1}(z)f^{(k-1)}(z)+\cdots +a_0(z)f(z)\right| < C \end{aligned}$$在 D 中是准正态的:假设 \(A,B\in {{mathbb {C}}\), \(C>0\) 和 \(\mathcal {F}\) 是满足对于每一个 \(z\in D\)$$$begin{aligned} 都是同调函数 f 的族}\left| f^{''}(z) + Af^{'}(z) + B f(z)\right| > C \end{aligned}$$并且至少有一个族 \(\left\{ f'/f:f\in \mathcal {F}\right\} \) 或 \(\left\{ f''/f:f\in \mathcal {F}\right\} \) 是正常的。那么 \(\mathcal {F}\) 在 D 中是准正态的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信