The Impact of the Limit q-Durrmeyer Operator on Continuous Functions

Pub Date : 2024-04-09 DOI:10.1007/s40315-024-00534-7
Övgü Gürel Yılmaz, Sofiya Ostrovska, Mehmet Turan
{"title":"The Impact of the Limit q-Durrmeyer Operator on Continuous Functions","authors":"Övgü Gürel Yılmaz, Sofiya Ostrovska, Mehmet Turan","doi":"10.1007/s40315-024-00534-7","DOIUrl":null,"url":null,"abstract":"<p>The limit <i>q</i>-Durrmeyer operator, <span>\\(D_{\\infty ,q}\\)</span>, was introduced and its approximation properties were investigated by Gupta (Appl. Math. Comput. 197(1):172–178, 2008) during a study of <i>q</i>-analogues for the Bernstein–Durrmeyer operator. In the present work, this operator is investigated from a different perspective. More precisely, the growth estimates are derived for the entire functions comprising the range of <span>\\(D_{\\infty ,q}\\)</span>. The interrelation between the analytic properties of a function <i>f</i> and the rate of growth for <span>\\(D_{\\infty ,q}f\\)</span> are established, and the sharpness of the obtained results are demonstrated.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00534-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The limit q-Durrmeyer operator, \(D_{\infty ,q}\), was introduced and its approximation properties were investigated by Gupta (Appl. Math. Comput. 197(1):172–178, 2008) during a study of q-analogues for the Bernstein–Durrmeyer operator. In the present work, this operator is investigated from a different perspective. More precisely, the growth estimates are derived for the entire functions comprising the range of \(D_{\infty ,q}\). The interrelation between the analytic properties of a function f and the rate of growth for \(D_{\infty ,q}f\) are established, and the sharpness of the obtained results are demonstrated.

分享
查看原文
极限 q-Durrmeyer 算子对连续函数的影响
Gupta 引入了极限 q-Durmeyer 算子 \(D_{\infty ,q}\) 并研究了它的近似特性(Appl.Comput.197(1):172-178,2008)在研究伯恩斯坦-德尔迈尔算子的 q-analogues 时研究了它的近似性质。在本研究中,我们将从另一个角度研究这个算子。更准确地说,我们推导了包括 \(D_{\infty ,q}\) 范围的整个函数的增长估计值。建立了函数 f 的解析性质与 \(D_{infty ,q}f\) 增长率之间的相互关系,并证明了所得结果的尖锐性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信