Tianji Zheng, Chengcheng Sun, Jian Zhang, Jiawei Ye, Xiaobin Rui, Zhixiao Wang
{"title":"A multi-aggregator graph neural network for backbone exaction of fracture networks","authors":"Tianji Zheng, Chengcheng Sun, Jian Zhang, Jiawei Ye, Xiaobin Rui, Zhixiao Wang","doi":"10.1007/s10596-024-10281-2","DOIUrl":null,"url":null,"abstract":"<p>Accurately analyzing the flow and transport behavior in a large discrete fracture network is computationally expensive. Fortunately, recent research shows that most of the flow and transport occurs within a small backbone in the network, and identifying the backbone to replace the original network can greatly reduce computational consumption. However, the existing machine learning based methods mainly focus on the features of the fracture itself to evaluate the importance of the fracture, the local structural information of the fracture network is not fully utilized. More importantly, these machine learning methods can neither control the identified backbone’s size nor ensure the backbone’s connectivity. To solve these problems, a deep learning model named multi-aggregator graph neural network (MA-GNN) is proposed for identifying the backbone of discrete fracture networks. Briefly, MA-GNN uses multiple aggregators to aggregate neighbors’ structural features and thus generates an inductive embedding to evaluate the criticality score of each node in the entire fracture network. Then, a greedy algorithm, which can control the backbone’s size and connectivity, is proposed to identify the backbone based on the criticality score. Experimental results demonstrate that the backbone identified by MA-GNN can recover the transport characteristics of the original network, outperforming state-of-the-art baselines. In addition, MA-GNN can identify influential fractures with higher Kendall’s <span>\\(\\tau \\)</span> correlation coefficient and Jaccard similarity coefficient. With the ability of size control, our proposed MA-GNN can provide an effective balance between accuracy and computational efficiency by choosing a suitable backbone size.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":"105 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10596-024-10281-2","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately analyzing the flow and transport behavior in a large discrete fracture network is computationally expensive. Fortunately, recent research shows that most of the flow and transport occurs within a small backbone in the network, and identifying the backbone to replace the original network can greatly reduce computational consumption. However, the existing machine learning based methods mainly focus on the features of the fracture itself to evaluate the importance of the fracture, the local structural information of the fracture network is not fully utilized. More importantly, these machine learning methods can neither control the identified backbone’s size nor ensure the backbone’s connectivity. To solve these problems, a deep learning model named multi-aggregator graph neural network (MA-GNN) is proposed for identifying the backbone of discrete fracture networks. Briefly, MA-GNN uses multiple aggregators to aggregate neighbors’ structural features and thus generates an inductive embedding to evaluate the criticality score of each node in the entire fracture network. Then, a greedy algorithm, which can control the backbone’s size and connectivity, is proposed to identify the backbone based on the criticality score. Experimental results demonstrate that the backbone identified by MA-GNN can recover the transport characteristics of the original network, outperforming state-of-the-art baselines. In addition, MA-GNN can identify influential fractures with higher Kendall’s \(\tau \) correlation coefficient and Jaccard similarity coefficient. With the ability of size control, our proposed MA-GNN can provide an effective balance between accuracy and computational efficiency by choosing a suitable backbone size.
期刊介绍:
Computational Geosciences publishes high quality papers on mathematical modeling, simulation, numerical analysis, and other computational aspects of the geosciences. In particular the journal is focused on advanced numerical methods for the simulation of subsurface flow and transport, and associated aspects such as discretization, gridding, upscaling, optimization, data assimilation, uncertainty assessment, and high performance parallel and grid computing.
Papers treating similar topics but with applications to other fields in the geosciences, such as geomechanics, geophysics, oceanography, or meteorology, will also be considered.
The journal provides a platform for interaction and multidisciplinary collaboration among diverse scientific groups, from both academia and industry, which share an interest in developing mathematical models and efficient algorithms for solving them, such as mathematicians, engineers, chemists, physicists, and geoscientists.