The survival function NPMLE for combined right-censored and length-biased right-censored failure time data: properties and applications

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
James H. McVittie, David B. Wolfson, David A. Stephens
{"title":"The survival function NPMLE for combined right-censored and length-biased right-censored failure time data: properties and applications","authors":"James H. McVittie, David B. Wolfson, David A. Stephens","doi":"10.1515/ijb-2023-0121","DOIUrl":null,"url":null,"abstract":"Many cohort studies in survival analysis have imbedded in them subcohorts consisting of incident cases and prevalent cases. Instead of analysing the data from the incident and prevalent cohorts alone, there are surely advantages to combining the data from these two subcohorts. In this paper, we discuss a survival function nonparametric maximum likelihood estimator (NPMLE) using both length-biased right-censored prevalent cohort data and right-censored incident cohort data. We establish the asymptotic properties of the survival function NPMLE and utilize the NPMLE to estimate the distribution for time spent in a Montreal area hospital.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2023-0121","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Many cohort studies in survival analysis have imbedded in them subcohorts consisting of incident cases and prevalent cases. Instead of analysing the data from the incident and prevalent cohorts alone, there are surely advantages to combining the data from these two subcohorts. In this paper, we discuss a survival function nonparametric maximum likelihood estimator (NPMLE) using both length-biased right-censored prevalent cohort data and right-censored incident cohort data. We establish the asymptotic properties of the survival function NPMLE and utilize the NPMLE to estimate the distribution for time spent in a Montreal area hospital.
综合右删失和长度偏右删失故障时间数据的生存函数 NPMLE:特性与应用
在生存分析中,许多队列研究都包含了由事故病例和流行病例组成的子队列。与单独分析事件队列和流行队列的数据相比,将这两个子队列的数据结合起来肯定有其优势。在本文中,我们讨论了使用长度偏右删失流行队列数据和右删失事件队列数据的生存函数非参数极大似然估计法(NPMLE)。我们建立了生存函数 NPMLE 的渐近特性,并利用 NPMLE 估算了在蒙特利尔地区医院花费时间的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信