Maya Kassem Agha, Batoul Maatouk, Rami Mhanna, Mohammad H. El-Dakdouki
{"title":"Catalytic Degradation Efficacy of Silver Nanoparticles Fabricated Using Actinidia deliciosa Peel Extract","authors":"Maya Kassem Agha, Batoul Maatouk, Rami Mhanna, Mohammad H. El-Dakdouki","doi":"10.1155/2024/8813109","DOIUrl":null,"url":null,"abstract":"The preparation of metallic nanoparticles using green synthetic approaches and its application toward the efficient degradation of environmentally hazardous dyes constitutes an attractive alternative to currently employed methods. In the current report, the green synthesis of silver nanoparticles (AgNPs) was successfully achieved using <i>Actinidia deliciosa</i> (kiwifruit) peel aqueous extract as a bioreducing agent under optimized synthesis conditions. The experimental parameters were optimized in terms of reactant ratio, reaction temperature, and reaction time. The biogenic nanoparticles exhibited SPR absorption band at <i>λ</i><sub>max</sub> 480 nm. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images revealed quasispherical monodisperse nanoparticles which were 36 nm in diameter. The hydrodynamic diameter of the nanoparticles was 106 nm as determined by dynamic light scattering, and the highly negative <i>ζ</i>-potential (−34 mV) supported its superior colloidal stability. Energy dispersive X-ray confirmed that silver is a major constituent of the nanoparticles. X-ray diffraction (XRD) diffractograms confirmed the crystallinity of the nanoparticles and its face-centered cubic (<i>fcc</i>) lattice structure. The functional groups in the plant’s phytochemicals facilitating the reduction of Ag<sup>+</sup> ions and stabilization of the formed AgNPs were identified by fourier transform infrared (FTIR) spectroscopy. In specific, the bands in the FTIR spectra at 3,412, 1,618, 1,419, and 1,237 cm<sup>−1</sup> suggested the presence of phenolic compounds. Phytochemical analysis by colorimetric assays revealed that the kiwifruit peel extract was rich in phenolic compounds. When evaluated in the catalytic degradation of organic dyes, the biosynthesized AgNPs induced instant and complete discoloration of the methylene blue dye when 1.6 mg of nanoparticles was used. At a lower dose of AgNPs (0.4 mg), 80% degradation of the dye occurred after 3 hr of treatment. The degradation reaction followed second-order kinetics with a rate constant of 0.01083 mM<sup>−1</sup>s<sup>−1</sup>. The current study highlights the immense potential of the prepared nanoparticles as efficient catalysts for the degradation of hazardous organic dyes such as methylene blue and presents an intriguing argument for investigating the catalytic efficiency of the biogenic AgNPs for the degradation of other structurally different dye pollutants.","PeriodicalId":16442,"journal":{"name":"Journal of Nanomaterials","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2024/8813109","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
The preparation of metallic nanoparticles using green synthetic approaches and its application toward the efficient degradation of environmentally hazardous dyes constitutes an attractive alternative to currently employed methods. In the current report, the green synthesis of silver nanoparticles (AgNPs) was successfully achieved using Actinidia deliciosa (kiwifruit) peel aqueous extract as a bioreducing agent under optimized synthesis conditions. The experimental parameters were optimized in terms of reactant ratio, reaction temperature, and reaction time. The biogenic nanoparticles exhibited SPR absorption band at λmax 480 nm. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images revealed quasispherical monodisperse nanoparticles which were 36 nm in diameter. The hydrodynamic diameter of the nanoparticles was 106 nm as determined by dynamic light scattering, and the highly negative ζ-potential (−34 mV) supported its superior colloidal stability. Energy dispersive X-ray confirmed that silver is a major constituent of the nanoparticles. X-ray diffraction (XRD) diffractograms confirmed the crystallinity of the nanoparticles and its face-centered cubic (fcc) lattice structure. The functional groups in the plant’s phytochemicals facilitating the reduction of Ag+ ions and stabilization of the formed AgNPs were identified by fourier transform infrared (FTIR) spectroscopy. In specific, the bands in the FTIR spectra at 3,412, 1,618, 1,419, and 1,237 cm−1 suggested the presence of phenolic compounds. Phytochemical analysis by colorimetric assays revealed that the kiwifruit peel extract was rich in phenolic compounds. When evaluated in the catalytic degradation of organic dyes, the biosynthesized AgNPs induced instant and complete discoloration of the methylene blue dye when 1.6 mg of nanoparticles was used. At a lower dose of AgNPs (0.4 mg), 80% degradation of the dye occurred after 3 hr of treatment. The degradation reaction followed second-order kinetics with a rate constant of 0.01083 mM−1s−1. The current study highlights the immense potential of the prepared nanoparticles as efficient catalysts for the degradation of hazardous organic dyes such as methylene blue and presents an intriguing argument for investigating the catalytic efficiency of the biogenic AgNPs for the degradation of other structurally different dye pollutants.
期刊介绍:
The overall aim of the Journal of Nanomaterials is to bring science and applications together on nanoscale and nanostructured materials with emphasis on synthesis, processing, characterization, and applications of materials containing true nanosize dimensions or nanostructures that enable novel/enhanced properties or functions. It is directed at both academic researchers and practicing engineers. Journal of Nanomaterials will highlight the continued growth and new challenges in nanomaterials science, engineering, and nanotechnology, both for application development and for basic research.