Zariski topology on the secondary-like spectrum of a module

IF 1 4区 数学 Q1 MATHEMATICS
Saif Salam, Khaldoun Al-Zoubi
{"title":"Zariski topology on the secondary-like spectrum of a module","authors":"Saif Salam, Khaldoun Al-Zoubi","doi":"10.1515/math-2024-0005","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0005_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ℜ</m:mi> </m:math> <jats:tex-math>\\Re </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a commutative ring with unity and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0005_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ℑ</m:mi> </m:math> <jats:tex-math>\\Im </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a left <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0005_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ℜ</m:mi> </m:math> <jats:tex-math>\\Re </jats:tex-math> </jats:alternatives> </jats:inline-formula>-module. We define the secondary-like spectrum of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0005_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ℑ</m:mi> </m:math> <jats:tex-math>\\Im </jats:tex-math> </jats:alternatives> </jats:inline-formula> to be the set of all secondary submodules <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0005_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>K</m:mi> </m:math> <jats:tex-math>K</jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0005_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ℑ</m:mi> </m:math> <jats:tex-math>\\Im </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that the annihilator of the socle of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0005_eq_007.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>K</m:mi> </m:math> <jats:tex-math>K</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the radical of the annihilator of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0005_eq_008.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>K</m:mi> </m:math> <jats:tex-math>K</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and we denote it by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0005_eq_009.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"normal\">Spec</m:mi> </m:mrow> <m:mrow> <m:mi>L</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>ℑ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{{\\rm{Spec}}}^{L}\\left(\\Im )</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this study, we introduce a topology on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0005_eq_010.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"normal\">Spec</m:mi> </m:mrow> <m:mrow> <m:mi>L</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>ℑ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{{\\rm{Spec}}}^{L}\\left(\\Im )</jats:tex-math> </jats:alternatives> </jats:inline-formula> having the Zariski topology on the second spectrum <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0005_eq_011.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"normal\">Spec</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>ℑ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{{\\rm{Spec}}}^{s}\\left(\\Im )</jats:tex-math> </jats:alternatives> </jats:inline-formula> as a subspace topology and study several topological structures of this topology.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"13 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0005","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \Re be a commutative ring with unity and \Im be a left \Re -module. We define the secondary-like spectrum of \Im to be the set of all secondary submodules K K of \Im such that the annihilator of the socle of K K is the radical of the annihilator of K K , and we denote it by Spec L ( ) {{\rm{Spec}}}^{L}\left(\Im ) . In this study, we introduce a topology on Spec L ( ) {{\rm{Spec}}}^{L}\left(\Im ) having the Zariski topology on the second spectrum Spec s ( ) {{\rm{Spec}}}^{s}\left(\Im ) as a subspace topology and study several topological structures of this topology.
模块类二级谱上的扎里斯基拓扑学
让 ℜ \Re 是一个具有统一性的交换环,而 ℑ \Im 是一个左 ℜ \Re 模块。我们定义ℑ \Im 的类二级谱是ℑ \Im 的所有二级子模块 K K 的集合,使得 K K 的湮没子是 K K 的湮没子的基,我们用 Spec L ( ℑ ) {{\rm{Spec}}}^{L}\left(\Im ) 表示它。在本研究中,我们在 Spec L ( ℑ ) {{\rm{Spec}}^{L}\left(\Im ) 上引入了一个具有第二谱 Spec s ( ℑ ) {{\rm{Spec}}^{s}\left(\Im ) 上的扎里斯基拓扑的子空间拓扑,并研究了这个拓扑的几个拓扑结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信