Jun Shi, Peiyi Zhang, Hechao Hou, Weifeng Cao, Lintao Zhou
{"title":"Optimization of servo accuracy of Y axis of dicing saw based on iterative learning control","authors":"Jun Shi, Peiyi Zhang, Hechao Hou, Weifeng Cao, Lintao Zhou","doi":"10.1007/s13198-024-02318-7","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Dicing saw is a key equipment in chip packaging, in which the servo performance of each axis affects the scribing accuracy. Since the Y-axis is used to locate the micron-level cutting street, its servo positioning accuracy is required to be very high. In this paper, a variable forgetting factor fuzzy iterative learning control (VFF-FILC) with tracking differentiator is proposed for the high-precision localization of the Y-axis electromechanical servo system of the dual-axis wheel dicing saw model 8230 manufactured by Advanced Dicing Technologies. The method combines fuzzy control with iterative learning control to overcome the problem of poor anti-interference ability of traditional PID control. VFF-FILC reduces the overshoot and build-up time, and also improves the tracking performance by adaptively adjusting the learning rate of the ILC algorithm according to the tracking error of the system. To address the problem of noise interference with the Y-axis servo system, tracking differentiator is used to process the input position signal. In order to verify the superiority of the proposed design, it is compared with three conventional controllers in MATLAB/SIMULINK platform and anti-interference experiments are conducted. The results show that the VFF-FILC reduces the rise time by 28.57% and the overshoot by 88.23% compared to the PID controller, which proves the superiority of the proposed method in the Y-axis servo system of the wheel dicing saw.</p>","PeriodicalId":14463,"journal":{"name":"International Journal of System Assurance Engineering and Management","volume":"19 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of System Assurance Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13198-024-02318-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dicing saw is a key equipment in chip packaging, in which the servo performance of each axis affects the scribing accuracy. Since the Y-axis is used to locate the micron-level cutting street, its servo positioning accuracy is required to be very high. In this paper, a variable forgetting factor fuzzy iterative learning control (VFF-FILC) with tracking differentiator is proposed for the high-precision localization of the Y-axis electromechanical servo system of the dual-axis wheel dicing saw model 8230 manufactured by Advanced Dicing Technologies. The method combines fuzzy control with iterative learning control to overcome the problem of poor anti-interference ability of traditional PID control. VFF-FILC reduces the overshoot and build-up time, and also improves the tracking performance by adaptively adjusting the learning rate of the ILC algorithm according to the tracking error of the system. To address the problem of noise interference with the Y-axis servo system, tracking differentiator is used to process the input position signal. In order to verify the superiority of the proposed design, it is compared with three conventional controllers in MATLAB/SIMULINK platform and anti-interference experiments are conducted. The results show that the VFF-FILC reduces the rise time by 28.57% and the overshoot by 88.23% compared to the PID controller, which proves the superiority of the proposed method in the Y-axis servo system of the wheel dicing saw.
期刊介绍:
This Journal is established with a view to cater to increased awareness for high quality research in the seamless integration of heterogeneous technologies to formulate bankable solutions to the emergent complex engineering problems.
Assurance engineering could be thought of as relating to the provision of higher confidence in the reliable and secure implementation of a system’s critical characteristic features through the espousal of a holistic approach by using a wide variety of cross disciplinary tools and techniques. Successful realization of sustainable and dependable products, systems and services involves an extensive adoption of Reliability, Quality, Safety and Risk related procedures for achieving high assurancelevels of performance; also pivotal are the management issues related to risk and uncertainty that govern the practical constraints encountered in their deployment. It is our intention to provide a platform for the modeling and analysis of large engineering systems, among the other aforementioned allied goals of systems assurance engineering, leading to the enforcement of performance enhancement measures. Achieving a fine balance between theory and practice is the primary focus. The Journal only publishes high quality papers that have passed the rigorous peer review procedure of an archival scientific Journal. The aim is an increasing number of submissions, wide circulation and a high impact factor.