Shasline Gedeon, Laila M. Boyd, Marlee Avril, Madhavi Gangapuram, Kinfe K. Redda, Tiffany W. Ardley
{"title":"Synthesis of new analogs of N-substituted(benzoylamino)-1,2,3,6-tetrahydropyridines","authors":"Shasline Gedeon, Laila M. Boyd, Marlee Avril, Madhavi Gangapuram, Kinfe K. Redda, Tiffany W. Ardley","doi":"10.1515/chem-2023-0183","DOIUrl":null,"url":null,"abstract":"The tetrahydropyridine (THP) moiety is notably present in synthetic and natural products, playing a cardinal role in the food, cosmetic, and pharmaceutical industries. The THP structure is an instrumental constituent and is widely found in alkaloids that have therapeutic properties against inflammation, cancer, the nervous system, and bacterial infections. The use of THPs has gained traction, so it is imperative to increase the structural database through the synthesis of THP derivatives. The focus of this study is to make structural modifications to the benzene ring portion of the lead compound while keeping the pyridine ring constant. Eleven novel THP analogs were synthesized using a four-step synthetic approach involving partial reduction of N-substituted ylides into 1,2,3,6-THPs. The results illustrate that 11 THPs were successfully synthesized in low to moderate yields. Flash chromatography was utilized for purification. Proton nuclear magnetic resonance, deuterium oxide exchange, carbon nuclear magnetic resonance, infrared spectroscopy, and CHN elemental analysis were utilized to characterize the THP analogs. This study aids in contributing knowledge to the THP database.","PeriodicalId":19520,"journal":{"name":"Open Chemistry","volume":"255 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/chem-2023-0183","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The tetrahydropyridine (THP) moiety is notably present in synthetic and natural products, playing a cardinal role in the food, cosmetic, and pharmaceutical industries. The THP structure is an instrumental constituent and is widely found in alkaloids that have therapeutic properties against inflammation, cancer, the nervous system, and bacterial infections. The use of THPs has gained traction, so it is imperative to increase the structural database through the synthesis of THP derivatives. The focus of this study is to make structural modifications to the benzene ring portion of the lead compound while keeping the pyridine ring constant. Eleven novel THP analogs were synthesized using a four-step synthetic approach involving partial reduction of N-substituted ylides into 1,2,3,6-THPs. The results illustrate that 11 THPs were successfully synthesized in low to moderate yields. Flash chromatography was utilized for purification. Proton nuclear magnetic resonance, deuterium oxide exchange, carbon nuclear magnetic resonance, infrared spectroscopy, and CHN elemental analysis were utilized to characterize the THP analogs. This study aids in contributing knowledge to the THP database.
期刊介绍:
Open Chemistry is a peer-reviewed, open access journal that publishes original research, reviews and short communications in the fields of chemistry in an ongoing way. The central goal is to provide a hub for researchers working across all subjects to present their discoveries, and to be a forum for the discussion of the important issues in the field. The journal is the premier source for cutting edge research in fundamental chemistry and it provides high quality peer review services for its authors across the world. Moreover, it allows for libraries everywhere to avoid subscribing to multiple local publications, and to receive instead all the necessary chemistry research from a single source available to the entire scientific community.